
EXPLANATIONS FROM CALCULUS II

Calculus can be used to explain many important facts in mathematics. Before calculus, these facts
are simply asserted without justi�cation. Now we can see why they are true.
Integrals for formulas. Many familiar formulas for area and volume can be computed with an

appropriate de�nite integral. The integral is set up by solving the appropriate equation and using the
appropriate integration technique. The table below lists a number of examples.
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Di�erential equations for functions. Di�erential equations can be used to explain (or even
de�ne) several basic functions.

Type of Function Di�erential Equation Technique Used Solution

Exponential dy
dx

= ky Separable, Homogeneous DE y = Aekx

Logistic dy
dx

= ky (1− y) Separable, Homogeneous DE y = 1
Ae−kx+1

Growth rates. Given two functions f and g that go to in�nity as n → ∞, we can determine
which grows faster by computing L = limn→∞

f(n)
g(n)

. If L = ∞, f grows faster than g. This can be

used to show that
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Decimal to fraction. Every fraction has a decimal expansion that either terminates or repeats.
Given a repeating decimal, we can represent it as a geometric series and �nd its sum. Let s = .a1a2...an.
Then 10ns = a1a2...an.a1a2...an. Subtracting, we �nd 10ns − s = a1a2...an. Hence s = a1a2...an

10n−1 =
a1a2...an
99...9

. This is the fractional form of the repeating decimal.
Series for irrational numbers. Using Taylor series and integrals of Taylor series, we can deter-

mine series that converge to many famous irrational numbers. These can be used to �nd arbitrarily
close decimal approximations for these numbers.
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