DERIVING AN EXPLICIT FORMULA FOR THE FIBONACCI NUMBERS

Define a power series whose coefficients are the Fibonacci numbers. This is called a generating function. Further, consider multiplying it by x and x^{2}.

$$
\begin{array}{rrr}
F(x) & = & x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+\ldots \\
x \cdot F(x) & = & x^{2}+x^{3}+2 x^{4}+3 x^{5}+\ldots \\
x^{2} \cdot F(x) & = & x^{3}+x^{4}+2 x^{5}+\ldots
\end{array}
$$

The first line is almost the sum of the latter two. In particular,

$$
\begin{gathered}
F(x)=x \cdot F(x)+x^{2} \cdot F(x)+x \\
F(x)=\frac{x}{1-x-x^{2}}
\end{gathered}
$$

This is the closed form of the generating function. Factor the denominator by finding where it is zero. We find

$$
1-x-x^{2}=(1-\alpha x)(1-\beta x)
$$

where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$, since $\alpha \beta=-1$ and $\alpha+\beta=1$. The generating function can be decomposed into partial fractions.

$$
F(x)=\frac{x}{1-x-x^{2}}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x}
$$

Solving for the coefficients, we find

$$
\begin{aligned}
x & =A(1-\beta x)+B(1-\alpha x) \\
& =(A+B)+(-A \beta-B \alpha) x .
\end{aligned}
$$

Thus $A+B=0$, and $-A\left(\frac{1-\sqrt{5}}{2}\right)-B\left(\frac{1+\sqrt{5}}{2}\right)=1$, so $A=\frac{1}{\sqrt{5}}$ and $B=-\frac{1}{\sqrt{5}}$. But the partial fractions can be expressed as geometric series, as $\frac{1}{1-\alpha x}=\sum(\alpha x)^{n}$. Thus

$$
F(x)=\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty}(\alpha x)^{n}-\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty}(\beta x)^{n}
$$

The coefficient of x^{n} in $F(x)$ is

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

This is an explicit formula for all Fibonacci numbers!
Note further that $\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)<\frac{1}{2}$ and $\left(\frac{1-\sqrt{5}}{2}\right)^{n} \rightarrow 0$, so

$$
f_{n} \approx \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

Specifically, the $n^{\text {th }}$ Fibonacci number is the integer closest to the quantity on this right. This also implies that the ratio of consecutive Fibonacci numbers

$$
\frac{f_{n+1}}{f_{n}} \rightarrow \frac{1+\sqrt{5}}{2}
$$

This quantity is called the golden ratio. It is widely used in art and architecture, as it is believed to be aesthetically pleasing.

