EVALUATING THE SUM OF INVERSE SQUARES

The integral test tells us that $\sum \frac{1}{n^{2}}$ converges. Summing up many terms provides an approximation of $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \approx 1.64493 \ldots$, and the integral test provides bounds on the error. But what is the exact value?

Consider the Taylor series for sine. Dividing by x, we have

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& \frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\ldots
\end{aligned}
$$

Now in any finite polynomial, a root of $x=r$ corresponds to a factor of $(x-r)$ in the polynomial. By the Fundamental Theorem of Algebra, any finite polynomial can be written as a product of such (complex) factors, along with some constant multiple.

We assume that the same holds for infinite polynomials. Now $\frac{\sin x}{x}$ has all the roots of $\sin x$ except 0 , namely $x=n \cdot \pi$, where $n= \pm 1, \pm 2, \pm 3, \ldots$ We express the factors in a slightly different form, $1-\frac{x}{r}$, noting that $x=r$ still produces a zero.

$$
\frac{\sin x}{x}=\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right)\left(1-\frac{x}{3 \pi}\right)\left(1+\frac{x}{3 \pi}\right) \cdots
$$

Multiplying together the pairs of factors for the roots $x= \pm r$, we find

$$
\frac{\sin x}{x}=\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right) \ldots
$$

Now we have two different polynomial expressions for $\frac{\sin x}{x}$, which should both have the same coefficients. We can find the coefficients by multiplying out the polynomial. The constant term must be 1 , and since $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, we do not need an additional constant multiple in our polynomial. Each x^{2} term is formed from an x^{2} term of one of the factors and 1's from all the other factors. Thus we have x^{2} term

$$
-\frac{x^{2}}{\pi^{2}}-\frac{x^{2}}{4 \pi^{2}}-\frac{x^{2}}{9 \pi^{2}}-\ldots=-\frac{1}{\pi^{2}}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) x^{2} .
$$

But the x^{2} term of the earlier infinite series for $\frac{\sin x}{x}$ was $-\frac{x^{2}}{3!}=-\frac{1}{6} x^{2}$. Equating the coefficients, we find

$$
-\frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=-\frac{1}{6} .
$$

Solving, we see

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

A similar argument can be used to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

