BASICS OF CONIC SECTIONS

A conic section is a set of points in the plane that is formed by intersecting a cone and a plane. The equation of a cone with vertex at the origin that opens in the z dimension is $z^2 = a(x^2 + y^2)$. The four (non-degenerate) types of conic sections are the circle, ellipse, parabola, and hyperbola. Conic sections can also be defined geometrically as a set of points some distance(s) from a point and another point or line.

The general second degree two-variable equation is $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, with A, B, C not all 0. Specific classes of conic section can be specified with certain restrictions on the values of the constants A - F. When the conic section is centered at the origin and opens up/down or left/right, we have the standard form. The standard forms can also be written as parametric equations (x, y) = (f(t), g(t)). This information and some basic algebraic properties are presented in the table below.

	Circle	Ellipse	Parabola	Hyperbola
cone	plane perpendicular	plane oblique	plane parallel	plane cuts both
definition	to cone axis	to cone axis	to side of cone	halves of cone
$\operatorname{point}/\operatorname{line}$	all points equidistant	all points whose distances	all points equidistant	all points whose distances
definition	from a point (center)	from two points (foci)	from a point (focus)	from two points (foci)
		have a constant sum	and line (directrix)	have a constant difference
restrictions on $A - F$	A = C, B = 0	$B^2 - 4AC < 0$	$B^2 - 4AC = 0$	$B^2 - 4AC > 0$
standard form	$x^2 + y^2 = r^2$	$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1, \ a > b$	$y = ax^2$ or $x = ay^2$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ or $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
parametric equations	$(r\cos\theta, r\sin\theta)$	$(a\cos\theta,b\sin\theta)$	(t, at^2) or (at^2, t)	$(a \sec \theta, b \tan \theta)$
distance c from	0	$c^2 = a^2 - b^2$	$a = \frac{1}{4c}$	$c^2 = a^2 + b^2$
center/vertex to focus				
eccentricity	0	$0 < e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} < 1$	1	$e = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a} > 1$