GENERALIZING ALGEBRA AND CALCULUS WITH VECTORS

The main goal of vector calculus is to generalize the concepts of algebra and calculus to larger numbers of dimensions. The following table has a list of algebraic concepts and their generalizations. Many of the generalizations exist in n dimensions, but for simplicity we restrict their statement to three dimensions.

Algebra Concept	Vector Generalization ($n=3$)
point (x, y)	point/vector $\vec{x}=(x, y, z)$
distance to the origin $D=\sqrt{x^{2}+y^{2}}$	magnitude of a vector $\|\vec{x}\|=\sqrt{x^{2}+y^{2}+z^{2}}$
distance between two points $\overline{X Y}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	distance between two points $\|\vec{a}-\vec{b}\|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
conic sections (four below)	quadric surfaces
circle $(x-a)^{2}+(y-b)^{2}=r^{2}$	sphere $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
parabola $y=x^{2}$ or $x=y^{2}$	paraboloid $z=x^{2}+y^{2}$
hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ or $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$	hyperboloid (one or two sheets)
	other quadric surfaces: elliptic cone, elliptic paraboloid, hyperbolic paraboloid
polar coordinates (r, θ) $(x, y)=(r \cos \theta, r \sin \theta)$	cylindrical coordinates (r, θ, z) $(x, y, z)=(r \cos \theta, r \sin \theta, z)$
$r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}$	$\begin{gathered} \text { spherical coordinates }(\rho, \theta, \phi) \\ (x, y, z)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \end{gathered}$
cosine of an angle	$\cos \theta=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|\|\vec{y}\|}$
triangle inequality $\overline{A C} \leq \overline{A B}+\overline{B C}$	$\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\|$
work $W=F d$	work $W=\vec{F} \cdot \vec{d}$
line (point-slope) $y-y_{0}=m\left(x-x_{0}\right)$	line (parametrized) $\vec{x}=\vec{m} t+\overrightarrow{x_{0}}$
plane	plane (parametrized) $\vec{x}=\vec{a} s+\vec{b} t+\overrightarrow{x_{0}}$
	plane (normal form) $\vec{n} \cdot\left(\vec{x}-\overrightarrow{x_{0}}\right)=0$
parallelogram	parallelogram $\vec{x}=\vec{a} s+\vec{b} t+\overrightarrow{x_{0}}, s, t \in[0,1]$
	parallelepiped $\vec{x}=\vec{a} s+\vec{b} t+\vec{c} u+\overrightarrow{x_{0}}$
open interval $\{x\|\|x-a\|<r\}$	open ball $B_{r}(\vec{a})=\{\vec{x}\| \| \vec{x}-\vec{a} \mid<r\}$
	open set $S: \forall \vec{x} \in S, \exists \delta>0$ s.t. $B_{\delta}(\vec{x}) \subseteq S$

Calculus concepts dealing with optimization and approximation of functions generalize to vector calculus as follows.

Optimization/Approximation Concept	Vector Calculus Concept
quadratic function $f(x)=a x^{2}$	quadratic form $q(\vec{x})=\vec{x}^{T} A \vec{x}$
quadratic opens up: $f(x)=a x^{2}, a>0$	QF positive definite: $q(\vec{x})>0$ for $\vec{x} \neq 0$
quadratic opens down: $f(x)=a x^{2}, a<0$	QF negative definite: $q(\vec{x})<0$ for $\vec{x} \neq 0$
	QF indefinite: $\exists x_{1}, x_{2}$ s.t. $q\left(\vec{x}_{1}\right)<0<q\left(\vec{x}_{2}\right)$
second derivative $\frac{d^{2} f}{d x^{2}}=\frac{d}{d x}\left(\frac{d f}{d x}\right)$	2nd-order partial derivative $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)$
	Hessian $H f(\vec{a})=\left[\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\right](\vec{a})=J \vec{\nabla} f(\vec{x})$
tangent line $y=f(a)+f^{\prime}(a)(x-a)$	tangent plane $\vec{\nabla} f(\vec{x}) \cdot(\vec{x}-\vec{a})=0$
linearization $L(x)=f(a)+f^{\prime}(a)(x-a)$	linear approximation $L(\vec{x})=f(\vec{a})+J f(\vec{a})(\vec{x}-\vec{a})$
	first-degree Taylor polynomial $p_{1}(\vec{x})=f(\vec{a})+\vec{\nabla} f(\vec{a}) \cdot(\vec{x}-\vec{a})$
Taylor polynomial (degree n) $p(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) \cdot x^{k}$	2nd-degree Taylor polynomial (let $\vec{h}=\vec{x}-\vec{a}$) $p_{2}(\vec{x})=f(\vec{a})+\vec{\nabla} f(\vec{a}) \cdot \vec{h}+\frac{1}{2} \vec{h}^{T} H f(\vec{a}) \vec{h}$
local minimum \exists interval I about $a, f(x) \geq f(a) \forall x \in B$	local minimum \exists open ball B about $\vec{a}, f(\vec{x}) \geq f(\vec{a}) \forall \vec{x} \in B$
local maximum \exists interval I about $a, f(x) \leq f(a) \forall x \in B$	local maximum \exists open ball B about $\vec{a}, f(\vec{x}) \leq f(\vec{a}) \forall \vec{x} \in B$
Extreme Value Theorem A continuous function on a closed, bounded interval achieves a min and max value on it.	Extreme Value Theorem A continuous function on a closed, bounded set achieves a min and max value on it.
First Derivative Test If f has a local extremum at a, then $f^{\prime}(a)=0$ or is undefined.	First Derivative Test If f has a local extremum at \vec{a}, then $\vec{\nabla} f(\vec{a})=\overrightarrow{0}$ or is undefined.
Second Derivative Test: Given $f^{\prime}(a)=0$, If $f^{\prime \prime}(a)>0, a$ is a local minimum. If $f^{\prime \prime}(a)<0, a$ is a local maximum.	Second Derivative Test: Given $\vec{\nabla} f(\vec{a})=\overrightarrow{0}$, If $\operatorname{Hf}(\vec{a})$ is pos. def., \vec{a} is a local minimum. If $\operatorname{Hf}(\vec{a})$ is neg. def., \vec{a} is a local maximum. If $\operatorname{Hf}(\vec{a})$ is indefinite, \vec{a} is a saddle point.

The various forms of integration studied in calculus I and II have natural generalizations in vector calculus.

Integral Calculus Concept	Vector Calculus Generalization
arclength $L=\int_{a}^{b} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t$	arclength $L=\int_{a}^{b}\left\|\vec{f}^{\prime}(t)\right\| d t$
Riemann integral $\int_{a}^{b} f(x) d x$	line integral $\int_{C} u \cdot d L=\int_{a}^{b} u(\vec{f}(t))\left\|\vec{f}^{\prime}(t)\right\| d t$
	line integral $\int_{C} \vec{F} \cdot d \vec{x}=\int_{a}^{b} \vec{F}(\vec{f}(t)) \cdot \vec{f}^{\prime}(t) d t$
volume by slicing (e.g. disk, washer)$V=\int_{a}^{b} A(x) d x$	double integral $\iint_{R} f \cdot d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$
	triple int. $\iiint_{S} f \cdot d A=\iint_{R}\left(\int_{g_{1}(x, y)}^{g_{2}(x, y)} f(x, y, z) d z\right) d A$
various integral properties	analogous integral properties
u-substitution $\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u$	change of variables for double integrals $\iint_{R} g(x, y) \cdot d A=\iint_{R^{*}} g(\vec{f}(s, t))\left\|\frac{\partial \vec{f}(s, t)}{\partial(s, t)}\right\| d s d t$
shell method $V=\int 2 \pi x \cdot f(x) d x$	polar coordinate integral $\iint_{R} g(x, y) d x \cdot d y$ $=\int_{\theta_{1}}^{\theta_{2}} \int_{f_{1}(\theta)}^{f_{2}(\theta)} g(r \cos \theta, r \sin \theta) r \cdot d r d \theta$
Fundamental Theorem of Calculus $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$	Fundamental Theorem of Line Integrals $\int_{a}^{b} \vec{\nabla} f(\vec{x}) \cdot d \vec{x}=f(\vec{b})-f(\vec{a})$
	Green's Theorem $\oint_{\partial R}\left(F_{1} d x+F_{2} d y\right)=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A$
	Stokes' Theorem $\oint_{C} F \cdot d r=\iint_{S}(\nabla \times F) \cdot n d A$
	Divergence Theorem $\iiint_{D} \nabla \cdot F d V=\iint_{S} F \cdot n d S$

