
GENERALIZING ALGEBRA AND CALCULUS WITH VECTORS

The main goal of vector calculus is to generalize the concepts of algebra and calculus to larger

numbers of dimensions. The following table has a list of algebraic concepts and their general-

izations. Many of the generalizations exist in n dimensions, but for simplicity we restrict their

statement to three dimensions.

Algebra Concept Vector Generalization (n = 3)

point (x, y) point/vector −→x = (x, y, z)

distance to the origin D =
√
x2 + y2 magnitude of a vector |−→x | =

√
x2 + y2 + z2

distance between two points distance between two points

XY =
√
(x2 − x1)2 + (y2 − y1)2

∣∣∣−→a −−→b ∣∣∣ = √
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

conic sections (four below) quadric surfaces

circle (x− a)2 + (y − b)2 = r2 sphere (x− a)2 + (y − b)2 + (z − c)2 = r2

ellipse x2

a2
+ y2

b2
= 1 ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1

parabola y = x2 or x = y2 paraboloid z = x2 + y2

hyperbola x2

a2
− y2

b2
= 1 or −x2

a2
+ y2

b2
= 1 hyperboloid (one or two sheets)

other quadric surfaces: elliptic cone,

elliptic paraboloid, hyperbolic paraboloid

polar coordinates (r, θ) cylindrical coordinates (r, θ, z)

(x, y) = (r cos θ, r sin θ) (x, y, z) = (r cos θ, r sin θ, z)

r2 = x2 + y2, tan θ = y
x

spherical coordinates (ρ, θ, φ)

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)

cosine of an angle cos θ =
−→x ·−→y
|−→x ||−→y |

triangle inequality AC ≤ AB +BC |−→x +−→y | ≤ |−→x |+ |−→y |
work W = Fd work W =

−→
F · −→d

line (point-slope) y − y0 = m (x− x0) line (parametrized) −→x = −→mt+−→x0
plane plane (parametrized) −→x = −→a s+−→b t+−→x0

plane (normal form) −→n · (−→x −−→x0) = 0

parallelogram parallelogram −→x = −→a s+−→b t+−→x0, s, t ∈ [0, 1]

parallelepiped −→x = −→a s+−→b t+−→c u+−→x0
open interval {x | |x− a| < r} open ball Br (−→a ) = {−→x | |−→x −−→a | < r}

open set S: ∀−→x ∈ S, ∃δ > 0 s.t. Bδ (−→x ) ⊆ S



Calculus concepts dealing with optimization and approximation of functions generalize to vector

calculus as follows.

Optimization/Approximation Concept Vector Calculus Concept

quadratic function f (x) = ax2 quadratic form q (−→x ) = −→x TA−→x
quadratic opens up: f (x) = ax2, a > 0 QF positive de�nite: q (−→x ) > 0 for −→x 6= 0

quadratic opens down: f (x) = ax2, a < 0 QF negative de�nite: q (−→x ) < 0 for −→x 6= 0

QF inde�nite: ∃x1, x2 s.t. q (−→x 1) < 0 < q (−→x 2)

second derivative d2f
dx2

= d
dx

(
df
dx

)
2nd-order partial derivative ∂2f

∂xj∂xi
= ∂

∂xj

(
∂f
∂xi

)
Hessian Hf (−→a ) =

[
∂2f

∂xj∂xi

]
(−→a ) = J

−→∇f (−→x )

tangent line y = f (a) + f ′ (a) (x− a) tangent plane
−→∇f (−→x ) · (−→x −−→a ) = 0

linearization linear approximation

L (x) = f (a) + f ′ (a) (x− a) L (−→x ) = f (−→a ) + Jf (−→a ) (−→x −−→a )
�rst-degree Taylor polynomial

p1 (−→x ) = f (−→a ) +−→∇f (−→a ) · (−→x −−→a )
Taylor polynomial (degree n) 2nd-degree Taylor polynomial (let

−→
h = −→x −−→a )

p (x) =
∑n
k=0

1
k!
f (k) (a) · xk p2 (−→x ) = f (−→a ) +−→∇f (−→a ) · −→h + 1

2

−→
h
T
Hf (−→a )−→h

local minimum local minimum

∃ interval I about a, f (x) ≥ f (a) ∀x ∈ B ∃ open ball B about −→a , f (−→x ) ≥ f (−→a ) ∀−→x ∈ B
local maximum local maximum

∃ interval I about a, f (x) ≤ f (a) ∀x ∈ B ∃ open ball B about −→a , f (−→x ) ≤ f (−→a ) ∀−→x ∈ B
Extreme Value Theorem Extreme Value Theorem

A continuous function on a closed, bounded A continuous function on a closed, bounded

interval achieves a min and max value on it. set achieves a min and max value on it.

First Derivative Test First Derivative Test

If f has a local extremum at a, If f has a local extremum at −→a ,
then f ′ (a) = 0 or is unde�ned. then

−→∇f (−→a ) = −→0 or is unde�ned.

Second Derivative Test: Given f ′ (a) = 0, Second Derivative Test: Given
−→∇f (−→a ) = −→0 ,

If f ′′ (a) > 0, a is a local minimum. If Hf (−→a ) is pos. def., −→a is a local minimum.

If f ′′ (a) < 0, a is a local maximum. If Hf (−→a ) is neg. def., −→a is a local maximum.

If Hf (−→a ) is inde�nite, −→a is a saddle point.



The various forms of integration studied in calculus I and II have natural generalizations in

vector calculus.

Integral Calculus Concept Vector Calculus Generalization

arclength L =
´ b
a

√
(f ′ (t))2 + (g′ (t))2dt arclength L =

´ b
a

∣∣∣∣−→f ′ (t)∣∣∣∣ dt
Riemann integral

´ b
a
f (x) dx line integral

´
C
u · dL =

´ b
a
u
(−→
f (t)

) ∣∣∣∣−→f ′ (t)∣∣∣∣ dt
line integral

´
C

−→
F · d−→x =

´ b
a

−→
F
(−→
f (t)

)
· −→f

′
(t) dt

volume by slicing (e.g. disk, washer) double integral
˜
R
f · dA =

´ b
a

´ g2(x)
g1(x)

f (x, y) dydx

V =
´ b
a
A (x) dx triple int.

˝
S
f · dA =

˜
R

(´ g2(x,y)
g1(x,y)

f (x, y, z) dz
)
dA

various integral properties analogous integral properties

u-substitution change of variables for double integrals
´ b
a
f (g (x)) g′ (x) dx =

´ g(b)
g(a)

f (u) du
˜
R
g (x, y) · dA =

˜
R∗ g

(−→
f (s, t)

) ∣∣∣∣∣∂
−→
f (s,t)

∂(s,t)

∣∣∣∣∣ dsdt
shell method V =

´
2πx · f (x) dx polar coordinate integral

˜
R
g (x, y) dx · dy

=
´ θ2
θ1

´ f2(θ)
f1(θ)

g (r cos θ, r sin θ) r · drdθ

Fundamental Theorem of Calculus Fundamental Theorem of Line Integrals´ b
a
f ′ (x) dx = f (b)− f (a)

´ b
a

−→∇f (−→x ) · d−→x = f
(−→
b
)
− f (−→a )

Green's Theorem¸
∂R

(F1dx+ F2dy) =
˜
R

(
∂F2

∂x
− ∂F1

∂y

)
dA

Stokes' Theorem¸
C
F · dr =

˜
S
(∇× F ) · n dA

Divergence Theorem˝
D
∇ · F dV =

˜
S
F · n dS


