GENERALIZING ALGEBRA AND CALCULUS WITH VECTORS

The main goal of vector calculus is to generalize the concepts of algebra and calculus to larger numbers of dimensions. The following table has a list of algebraic concepts and their generalizations. Many of the generalizations exist in n dimensions, but for simplicity we restrict their statement to three dimensions.

Algebra Concept	Vector Generalization $(n = 3)$
point (x, y)	$\operatorname{point/vector} \overrightarrow{x} = (x,y,z)$
distance to the origin $D = \sqrt{x^2 + y^2}$	magnitude of a vector $ \vec{x} = \sqrt{x^2 + y^2 + z^2}$
distance between two points	distance between two points
$\overline{XY} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$\left \overrightarrow{a} - \overrightarrow{b} \right = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
conic sections (four below)	quadric surfaces
circle $(x - a)^{2} + (y - b)^{2} = r^{2}$	sphere $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$
ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
parabola $y = x^2$ or $x = y^2$	paraboloid $z = x^2 + y^2$
hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ or $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	hyperboloid (one or two sheets)
	other quadric surfaces: elliptic cone,
	elliptic paraboloid, hyperbolic paraboloid
polar coordinates (r, θ)	cylindrical coordinates (r, θ, z)
$(x,y) = (r\cos\theta, r\sin\theta)$	$(x, y, z) = (r \cos \theta, r \sin \theta, z)$
$r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$	spherical coordinates (ρ, θ, ϕ)
	$(x, y, z) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$
cosine of an angle	$\cos\theta = \frac{\overrightarrow{x} \cdot \overrightarrow{y}}{ \overrightarrow{x} \overrightarrow{y} }$
triangle inequality $\overline{AC} \leq \overline{AB} + \overline{BC}$	$ \overrightarrow{x} + \overrightarrow{y} \leq \overrightarrow{x} + \overrightarrow{y} $
work $W = Fd$	work $W = \overrightarrow{F} \cdot \overrightarrow{d}$
line (point-slope) $y - y_0 = m (x - x_0)$	line (parametrized) $\overrightarrow{x} = \overrightarrow{m}t + \overrightarrow{x_0}$
plane	plane (parametrized) $\overrightarrow{x} = \overrightarrow{a}s + \overrightarrow{b}t + \overrightarrow{x_0}$
	plane (normal form) $\overrightarrow{n} \cdot (\overrightarrow{x} - \overrightarrow{x_0}) = 0$
parallelogram	parallelogram $\overrightarrow{x} = \overrightarrow{a}s + \overrightarrow{b}t + \overrightarrow{x_0}, s, t \in [0, 1]$
	parallelepiped $\overrightarrow{x} = \overrightarrow{a}s + \overrightarrow{b}t + \overrightarrow{c}u + \overrightarrow{x_0}$
open interval $\{x \mid x-a < r\}$	open ball $B_r(\vec{a}) = \{ \vec{x} \mid \vec{x} - \vec{a} < r \}$
	open set $S: \forall \overrightarrow{x} \in S, \exists \delta > 0 \text{ s.t. } B_{\delta}(\overrightarrow{x}) \subseteq S$

Calculus concepts dealing with optimization and approximation of functions generalize to vector calculus as follows.

Optimization/Approximation Concept	Vector Calculus Concept
quadratic function $f(x) = ax^2$	quadratic form $q(\overrightarrow{x}) = \overrightarrow{x}^T A \overrightarrow{x}$
quadratic opens up: $f(x) = ax^2, a > 0$	QF positive definite: $q(\vec{x}) > 0$ for $\vec{x} \neq 0$
quadratic opens down: $f(x) = ax^2, a < 0$	QF negative definite: $q(\vec{x}) < 0$ for $\vec{x} \neq 0$
	QF indefinite: $\exists x_1, x_2 \text{ s.t. } q(\overrightarrow{x}_1) < 0 < q(\overrightarrow{x}_2)$
second derivative $\frac{d^2f}{dx^2} = \frac{d}{dx}\left(\frac{df}{dx}\right)$	2nd-order partial derivative $\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$
	Hessian $Hf(\overrightarrow{a}) = \left[\frac{\partial^2 f}{\partial x_j \partial x_i}\right](\overrightarrow{a}) = J \overrightarrow{\nabla} f(\overrightarrow{x})$
tangent line $y = f(a) + f'(a)(x - a)$	tangent plane $\overrightarrow{\nabla} f(\overrightarrow{x}) \cdot (\overrightarrow{x} - \overrightarrow{a}) = 0$
linearization	linear approximation
L(x) = f(a) + f'(a)(x - a)	$L\left(\overrightarrow{x}\right) = f\left(\overrightarrow{a}\right) + Jf\left(\overrightarrow{a}\right)\left(\overrightarrow{x} - \overrightarrow{a}\right)$
	first-degree Taylor polynomial
	$p_1(\overrightarrow{x}) = f(\overrightarrow{a}) + \overrightarrow{\nabla} f(\overrightarrow{a}) \cdot (\overrightarrow{x} - \overrightarrow{a})$
Taylor polynomial (degree n)	2nd-degree Taylor polynomial (let $\overrightarrow{h} = \overrightarrow{x} - \overrightarrow{a}$)
$p(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(a) \cdot x^{k}$	$p_2(\overrightarrow{x}) = f(\overrightarrow{a}) + \overrightarrow{\nabla}f(\overrightarrow{a}) \cdot \overrightarrow{h} + \frac{1}{2}\overrightarrow{h}^T Hf(\overrightarrow{a}) \overrightarrow{h}$
local minimum	local minimum
$\exists \text{ interval } I \text{ about } a, f(x) \ge f(a) \ \forall x \in B$	$\exists \text{ open ball } B \text{ about } \overrightarrow{a}, f(\overrightarrow{x}) \ge f(\overrightarrow{a}) \ \forall \overrightarrow{x} \in B$
local maximum	local maximum
$\exists \text{ interval } I \text{ about } a, f(x) \leq f(a) \ \forall x \in B$	$\exists \text{ open ball } B \text{ about } \overrightarrow{a}, f(\overrightarrow{x}) \leq f(\overrightarrow{a}) \ \forall \overrightarrow{x} \in B$
Extreme Value Theorem	Extreme Value Theorem
A continuous function on a closed, bounded	A continuous function on a closed, bounded
interval achieves a min and max value on it.	set achieves a min and max value on it.
First Derivative Test	First Derivative Test
If f has a local extremum at a ,	If f has a local extremum at \overrightarrow{a} ,
then $f'(a) = 0$ or is undefined.	then $\overrightarrow{\nabla} f(\overrightarrow{a}) = \overrightarrow{0}$ or is undefined.
Second Derivative Test: Given $f'(a) = 0$,	Second Derivative Test: Given $\overrightarrow{\nabla} f(\overrightarrow{a}) = \overrightarrow{0}$,
If $f''(a) > 0$, a is a local minimum.	If $Hf(\overrightarrow{a})$ is pos. def., \overrightarrow{a} is a local minimum.
If $f''(a) < 0$, a is a local maximum.	If $Hf(\overrightarrow{a})$ is neg. def., \overrightarrow{a} is a local maximum.
	If $Hf(\overrightarrow{a})$ is indefinite, \overrightarrow{a} is a saddle point.

The various forms of integration studied in calculus I and II have natural generalizations in vector calculus.

Integral Calculus Concept	Vector Calculus Generalization
arclength $L = \int_{a}^{b} \sqrt{\left(f'\left(t\right)\right)^{2} + \left(g'\left(t\right)\right)^{2}} dt$	arclength $L = \int_{a}^{b} \left \overrightarrow{f}'(t) \right dt$
Riemann integral $\int_{a}^{b} f(x) dx$	line integral $\int_{C} u \cdot dL = \int_{a}^{b} u\left(\overrightarrow{f}(t)\right) \left \overrightarrow{f}'(t)\right dt$
	line integral $\int_C \overrightarrow{F} \cdot d\overrightarrow{x} = \int_a^b \overrightarrow{F} \left(\overrightarrow{f}(t)\right) \cdot \overrightarrow{f}'(t) dt$
volume by slicing (e.g. disk, washer)	double integral $\iint_R f \cdot dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) dy dx$
$V = \int_{a}^{b} A(x) dx$	triple int. $\iiint_S f \cdot dA = \iint_R \left(\int_{g_1(x,y)}^{g_2(x,y)} f(x,y,z) dz \right) dA$
various integral properties	analogous integral properties
<i>u</i> -substitution	change of variables for double integrals
$\int_{a}^{b} f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$	$\iint_{R} g\left(x, y\right) \cdot dA = \iint_{R^{*}} g\left(\overrightarrow{f}\left(s, t\right)\right) \left \frac{\partial \overrightarrow{f}\left(s, t\right)}{\partial(s, t)} \right ds dt$
shell method $V = \int 2\pi x \cdot f(x) dx$	polar coordinate integral $\iint_{R} g(x, y) dx \cdot dy$
	$= \int_{\theta_1}^{\theta_2} \int_{f_1(\theta)}^{f_2(\theta)} g\left(r\cos\theta, r\sin\theta\right) r \cdot drd\theta$
Fundamental Theorem of Calculus	Fundamental Theorem of Line Integrals
$\int_{a}^{b} f'(x) dx = f(b) - f(a)$	$\int_{a}^{b} \overrightarrow{\nabla} f\left(\overrightarrow{x}\right) \cdot d\overrightarrow{x} = f\left(\overrightarrow{b}\right) - f\left(\overrightarrow{a}\right)$
	Green's Theorem
	$\oint_{\partial R} \left(F_1 dx + F_2 dy \right) = \iint_R \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$
	Stokes' Theorem
	$\oint_C F \cdot dr = \iint_S \left(\nabla \times F \right) \cdot n dA$
	Divergence Theorem
	$\iiint_D \nabla \cdot F dV = \iint_S F \cdot n dS$