
ARCLENGTH AND INTEGRALS

To �nd the length of a straight line, you can use the distance formula, which comes from

the Pythagorean Theorem. But how can we �nd the length of a curve, assuming this concept

can be de�ned appropriately? As usual in calculus, if we don't know how to de�ne something

exactly, we use an approximation instead.

PARAMETRIC CURVES Subdivide a parametric curve (x, y) = (f (t) , g (t)), a ≤
t ≤ b, and approximate each piece with a short line segment. Let ds be the length of a

typical segment. We can relate it to the horizontal and vertical lengths dx and dy using the

Pythagorean Theorem.

ds2 = dx2 + dy2

We divide by dt2, solve for ds, and integrate to �nd the length L of the curve.(
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L =

ˆ
ds =

ˆ b
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√
[f ′ (t)]2 + [g′ (t)]2dt.

We make this the de�nition of the length of a plane curve. We require that f (t) and g (t)

are continuously di�erentiable functions and that f ′ and g′ are not simultaneously 0. Thus

the curve is smooth, so that the parametrization doesn't backtrack on itself.

Calculating arclength leads to many interesting integrals which illustrate many di�erent

integration techniques. Here are some examples.

Example. A circle with radius r can be parametrized by (x, y) = (r cos t, r sin t), 0 ≤
t ≤ 2π. Its arclength is

L =

ˆ 2π

0

√
(−r sin t)2 + (r cos t)2dt =

ˆ 2π

0

√
r2
(
sin2 t+ cos2 t

)
dt =

ˆ 2π

0

r · dt = 2πr

Thus we obtain the expected formula for the circumference of a circle. This provides a

justi�cation for a formula that has previously only been taken for granted.

Example. Find the length of the curve (x, y) =
(
t3, 3

2
t2
)
, 0 ≤ t ≤

√
3.

Solution. The length is
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ˆ √3
0
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where the integration uses the substitution u = t2 + 1, du = 2t · dt.



Example. A cycloid is a curve formed by marking a point on a circle and tracing the

curve it forms as it is rolled along a line. It can be shown that if the curve starts at the origin

and the circle has radius 1, the cycloid is parametrized by (x, y) = (t− sin t, 1− cos t). Find

the length of one arch of the cycloid (0 ≤ t ≤ 2π).

Solution. The length is

L =
´ 2π
0

√
(1− cos t)2 + (sin t)2dt definition

=
´ 2π
0

√
1− 2 cos t+ cos2 t+ sin2 tdt expand binomial

=
´ 2π
0

√
2− 2 cos tdt trig identity

=
√
2
´ 2π

0

√
1− cos tdt simplify

=
√
2
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0

√
2 sin2

(
t
2

)
dt power − reducing formula

= 2
´ 2π
0

sin
(
t
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)
dt sine is positive on [0, π]

= −4 cos
(
t
2
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integrate

= 8 evaluate

RECTANGULAR CURVES A rectangular function y = f (x) can be parametrized

as (x, y) = (t, f (t)). This converts the arclength formula to

L =

ˆ b

a

√
1 + [f ′ (x)]2dx.

Example. Find the arclength of the semicircle y =
√
1− x2 on [−1, 1].

Solution. The length is

L =

ˆ 1

−1

√√√√1 +

(
−x√
1− x2

)2

dx =

ˆ 1

−1

√
1− x2 + x2

1− x2
dx =

ˆ 1

−1

1√
1− x2

dx = arcsinx|1−1 = π

Example. Find the arclength of y = .8x1.25 on [0, 9].

Solution. We �nd that

L =

ˆ 9

0

√
1 + (x.25)2dx =

ˆ 9

0

√
1 +
√
xdx.

Using the substitution u = 1 +
√
x, du = 1

2
√
x
dx with resubstitution dx = 2 (u− 1) du,
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Rather than �nd the length of a curve between two particular points, we may wish to �nd

a formula for the length between a particular point and an arbitrary point. The arclength

function L (x) of y = f (x) starting at x = a is

L (x) =

ˆ x

a

√
1 + [f ′ (t)]2dt.

Example. Find the arclength function of the catenary curve y = 1
2
(ex + e−x) starting

at x = 0.

Solution. We �rst note that

1+(y′)
2
= 1+
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1

2
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2
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1

4
e2x+

1

2
+
1

4
e−2x =
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Then

L (x) =

ˆ x

0

√(
1

2
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1

2
e−t
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dt =

ˆ x

0

(
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2
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2
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Example. Find the arclength function of the parabola y = x2 starting at x = 0.

Solution. We see

L =

ˆ a

0

√
1 + (2x)2dx =

1

2

ˆ
sec3 θdθ

using the trig substitution x = 1
2
tan θ, dx = 1

2
sec2 θdθ,

√
1 + 4x2 = sec θ. We use integration

by parts on the latter integral: u = sec θ, du = sec θ tan θdθ, dv = sec2 θdθ, v = tan θ.

´
sec3 θdθ = sec θ tan θ −

´
tan θ sec θ tan θdθ

= sec θ tan θ −
´
(sec2 θ − 1) sec θdθ

= sec θ tan θ +
´
sec θdθ −

´
sec3 θdθ

2
´
sec3 θdθ = sec θ tan θ + ln |sec θ + tan θ|

Undoing the trig substitution, we see

L =
1

4
2x
√
1 + 4x2 +

1

4
ln
∣∣∣√1 + 4x2 + 2x

∣∣∣∣∣∣∣a
0
=

1

2
a
√
1 + 4a2 +

1

4
ln
(√

1 + 4a2 + 2a
)
.

Thus �nding the arclength for a �simple� curve turns out to be quite complicated, involving

trig substitution and integration by parts.

What if we try to �nd the arclength of the cubic y = 1
3
x3? The formula gives us

L =

ˆ a

0

√
1 + (x2)2dx =

ˆ a

0

√
1 + x4dx.

This function has no elementary antiderivative. Arclengths on it must be approximated by

numerical methods. Many common functions and curves, such as xn for most n, sinx, cosx,

tanx, and noncircular ellipses, lead to integrals with no elementary antiderivative.



EXERCISES. Find the arclength function of the following parametric curves starting

at t = 0 (�nd the length when limits of integration are given).

Name Function Hint

1 circle (3 sin t, 3 cos t), [0, 2π] Trig Identity

2 spiral (t cos t, t sin t) Trig Substitution, Int. by Parts

3 logarithmic spiral (et cos t, et sin t) Trig Identity

4 (cos t, t+ sin t) Power Reducing

5 astroid
(
cos3 t, sin3 t

)
,
[
0, π

2

]
Trig Identity

6 involute (cos t+ t sin t, sin t− t cos t) Trig Identity

7 (5 cos t− cos 5t, 5 sin t− sin 5t) Sum Identity, Power Reducing

8 semicubical parabola (t2, t3) Factor, Substitution

Find the arclength function of the following rectangular curves starting at x = 0 (�nd the

length when limits of integration are given).

Name Function Hint

9 line y = mx+ b Agrees with distance formula

10 logarithm y = lnx Trig Substitution, Trig Identity

11 semicubical parabola y = x
3
2 Substitution

12 astroid x
2
3 + y

2
3 = 1, [0, 1] Tricky Algebra

13 y = x3

6
+ 1

2x
Perfect Square

14 y = x4

8
+ 1

4x2
Perfect Square

15 y = x2

4
− 1

2
lnx Perfect Square

16 y = xn+1

2(n+1)
+ x−(n−1)

2(n−1) , n 6= ±1 Perfect Square

17 y = ln (cos x) Trig Identity

18 y = ln (1− x2) Partial Fractions


