MIXTURE PROBLEMS WITH EQUAL INFLOW AND OUTFLOW

In a mixture problem, there is a container with fluid flowing into and out of it. Some amount of a chemical is dissolved in it. The differential equation governing this situation will be

$$
\begin{gathered}
\text { rate of change of } \\
\text { amount in container }
\end{gathered}=\begin{gathered}
\text { rate that } \\
\text { chemical arrives }
\end{gathered}-\begin{gathered}
\text { rate that } \\
\text { chemical departs }
\end{gathered}
$$

Let $y(t)$ be the amount of the chemical in the container at time t. Let $V(t)$ be the volume of liquid in the container. We assume that inflow and outflow are equal, which implies that the volume is constant. Then

$$
\text { departure rate }=\frac{y(t)}{V} \cdot \text { outflow }
$$

Thus the differential equation is

$$
\frac{d y}{d t}=\text { arrival rate }-\frac{y(t)}{V} \cdot \text { outflow }
$$

A differential equation of the form $\frac{d y}{d t}=r+k y$ is separable. Separating, we see

$$
\begin{array}{r}
\int \frac{d y}{r+k y}=\int d t \\
\frac{1}{k} \ln |r+k y|=t+C \\
r+k y= \pm e^{k(t+C)}= \pm e^{C} e^{k t}=A e^{k t}
\end{array}
$$

where $A= \pm e^{k C}$. Then

$$
y=\frac{1}{k}\left(A e^{k t}-r\right)=B e^{k t}-\frac{r}{k}
$$

where $B=\frac{A}{k}$.
Example. In an oil refinery, a storage tank contains 2000 gallons of gasoline that initially has 100 lb of an additive dissolved in it. Gasoline containing 2 lb of additive per gallon is pumped into the tank at a rate of $40 \mathrm{gal} / \mathrm{min}$. The well-mixed solution is pumped out at the same rate. How much additive is in the tank 20 min after the pumping process begins?

Solution. We have $V=2000$, arrival rate $2 \frac{\mathrm{lb}}{\mathrm{gal}} \cdot 40 \frac{\mathrm{gal}}{\mathrm{min}}=80 \frac{\mathrm{lb}}{\mathrm{min}}$, and departure rate

$$
d e p=\frac{y l b}{2000 \mathrm{gal}} \cdot 40 \frac{\mathrm{gal}}{\mathrm{~min}}=\frac{y}{50} \frac{l b}{\mathrm{~min}} .
$$

Thus the differential equation is $\frac{d y}{d t}=80-\frac{y}{50}$. The solution has the form

$$
y=B e^{-\frac{t}{50}}+4000
$$

Substituting the initial condition $y(0)=100$, we find $B=-3900$. Thus

$$
\begin{gathered}
y=4000-3900 e^{-.02 t} \\
y(20)=4000-3900 e^{-.02 \cdot 20} \approx 1385.75 \mathrm{lb}
\end{gathered}
$$

Example. Beginning at time $t=0$, a solution containing $40 \mathrm{mg} / \mathrm{l}$ of a drug is added to a patient's bloodstream, containing five liters of blood, at a rate of $.15 \mathrm{l} / \mathrm{hr}$, and well-mixed blood is withdrawn at the same rate. How much of the drug is in the patient's blood at time t, and what happens to this amount as time grows large?

Solution. We have $V=5$, arrival rate $40 \frac{\mathrm{mg}}{\mathrm{l}} \cdot .15 \frac{l}{h r}=6 \frac{\mathrm{mg}}{\mathrm{hr}}$, and departure rate

$$
d e p=\frac{y m g}{5 l} \cdot .15 \frac{l}{h r}=.03 y \frac{m g}{h r} .
$$

Thus the differential equation is $\frac{d y}{d t}=6-.03 y$. The solution has the form

$$
y=B e^{-.03 t}+200
$$

Substituting the initial condition $y(0)=0$, we find $B=-200$. Thus

$$
y=200-200 e^{-.03 t}
$$

Thus $y \rightarrow 200$ as time grows large.

Exercises.

1. A 200 gallon tank is full of distilled water. At time $t=0$, a solution containing $0.5 \mathrm{lb} / \mathrm{gal}$ of concentrate enters the tank at the rate of $5 \mathrm{gal} / \mathrm{min}$, and the well-stirred mixture is withdrawn at the same rate. How many pounds of concentrate will the tank contain at time t ? What is the limit of this process?

Solution:

$$
y=100-100 e^{-.025 t}
$$

2. An executive conference room of a corporation contains $4500 \mathrm{ft}^{3}$ of air initially free of carbon monoxide. Starting at time $t=0$, cigarette smoke containing 4% carbon monoxide is blown into the room at the rate of $0.3 \mathrm{ft}^{3} / \mathrm{min}$. A ceiling fan keeps the air in the room well-circulated and the air leaves the room at the same rate of $0.3 \mathrm{ft}^{3} / \mathrm{min}$. Find the time when the concentration of carbon monoxide in the room reaches 0.01%.

Solution:

$$
t=\frac{4500}{-.3} \ln \left(\frac{-.0001}{.04}+1\right)
$$

