
DERIVING AN EXPLICIT FORMULA FOR THE FIBONACCI NUMBERS

The Fibonacci numbers are de�ned by the di�erence equation

xk+2 = xk+1 + xk

with x0 = 0, x1 = 1. Thus the �rst few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

To �nd a solution, substitute xk = rk into the di�erence equation, obtaining

rk+2 = rk+1 + rk
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are solutions to the di�erence equation. Thus any linear combination of these solutions is also a

solution, so the general solution which spans the set of all possible solutions is
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To �nd the particular solution with the given initial conditions, we substitute in k = 0 and

k = 1, obtaining

A+B = 0
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Solving this system of linear equations, we �nd A = 1√
5
and B = − 1√

5
. Thus
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This is an explicit formula for all Fibonacci numbers!

Note further that 1√
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→ 0 as k →∞, so
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Speci�cally, the kth Fibonacci number is the integer closest to the quantity on this right. This

also implies that the ratio of consecutive Fibonacci numbers

fk+1

fk
→ 1 +
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.

This quantity is called the golden ratio. It is widely used in art and architecture, as it is believed

to be aesthetically pleasing.


