DERIVING AN EXPLICIT FORMULA FOR THE FIBONACCI NUMBERS
The Fibonacci numbers are defined by the difference equation

Thyo = Tpq1 + T

with xqg = 0, 1 = 1. Thus the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

To find a solution, substitute x; = r* into the difference equation, obtaining

T‘k+2 — Tk—i—l 4 Tk

rk<r2—r—1):O

k k
The zeros of 2 —r — 1 =0 are a = % and B = 1’—2‘/5 Thus o = (H—?\/g) and BF = (1’—2\/5)
are solutions to the difference equation. Thus any linear combination of these solutions is also a

solution, so the general solution which spans the set of all possible solutions is

o= A <1+2¢5>k+3 (1 _2\/g>k.

To find the particular solution with the given initial conditions, we substitute in £ = 0 and
k =1, obtaining
A+B=0
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Solving this system of linear equations, we find A = \}3 and B = —%. Thus
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This is an explicit formula for all Fibonacci numbers!
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Note further that % (1_2\/5) < % and (%) — 0 as k — o0, so
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Specifically, the £ Fibonacci number is the integer closest to the quantity on this right. This

also implies that the ratio of consecutive Fibonacci numbers
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This quantity is called the golden ratio. It is widely used in art and architecture, as it is believed
to be aesthetically pleasing.



