DERIVING AN EXPLICIT FORMULA FOR THE FIBONACCI NUMBERS

The Fibonacci numbers are defined by the difference equation

$$
x_{k+2}=x_{k+1}+x_{k}
$$

with $x_{0}=0, x_{1}=1$. Thus the first few Fibonacci numbers are $1,1,2,3,5,8,13,21,34,55,89 \ldots$ To find a solution, substitute $x_{k}=r^{k}$ into the difference equation, obtaining

$$
\begin{gathered}
r^{k+2}=r^{k+1}+r^{k} \\
r^{k}\left(r^{2}-r-1\right)=0
\end{gathered}
$$

The zeros of $r^{2}-r-1=0$ are $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Thus $\alpha^{k}=\left(\frac{1+\sqrt{5}}{2}\right)^{k}$ and $\beta^{k}=\left(\frac{1-\sqrt{5}}{2}\right)^{k}$ are solutions to the difference equation. Thus any linear combination of these solutions is also a solution, so the general solution which spans the set of all possible solutions is

$$
x_{k}=A\left(\frac{1+\sqrt{5}}{2}\right)^{k}+B\left(\frac{1-\sqrt{5}}{2}\right)^{k}
$$

To find the particular solution with the given initial conditions, we substitute in $k=0$ and $k=1$, obtaining

$$
\begin{gathered}
A+B=0 \\
A\left(\frac{1+\sqrt{5}}{2}\right)+B\left(\frac{1-\sqrt{5}}{2}\right)=1
\end{gathered}
$$

Solving this system of linear equations, we find $A=\frac{1}{\sqrt{5}}$ and $B=-\frac{1}{\sqrt{5}}$. Thus

$$
x_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}
$$

This is an explicit formula for all Fibonacci numbers!
Note further that $\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)<\frac{1}{2}$ and $\left(\frac{1-\sqrt{5}}{2}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$, so

$$
f_{k} \approx \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}
$$

Specifically, the $k^{t h}$ Fibonacci number is the integer closest to the quantity on this right. This also implies that the ratio of consecutive Fibonacci numbers

$$
\frac{f_{k+1}}{f_{k}} \rightarrow \frac{1+\sqrt{5}}{2} .
$$

This quantity is called the golden ratio. It is widely used in art and architecture, as it is believed to be aesthetically pleasing.

