
INFINITE SERIES AND NUMBER THEORY

In�nite Series. In�nite series are typically introduced in calculus II. Loosely speaking, an

in�nite series is the sum of an in�nite sequence. More precisely, it is the limit of the sequence of

partial sums. That is,
∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak

Many basic properties of �nite sums extend to in�nite series. In particular,

∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk,
∞∑
k=1

c · ak = c
∞∑
k=1

ak,
∞∑
k=1

∞∑
j=1

akbj =
∞∑
k=1

ak
∞∑
j=1

bj =
∞∑
j=1

∞∑
k=1

akbj

Geometric Series. A sequence of the form a, ar, ar2, ... , arn−1 is called geometric. The

number a is the leading term, and r is the ratio. To �nd the sum Sn, multiply by r and then

subtract.

Sn =
n∑
k=0

ark = a+ ar + ...+ arn

r · Sn =
n∑
k=0

ark+1 = ar + ar2 + ...+ arn+1

Sn − r · Sn = a− arn+1

Sn =
a (1− rn+1)

1− r

This is the sum of a �nite geometric series. If we take a limit as n → ∞, we �nd the sum of an

in�nite geometric series is S = a
1−r when |r| < 1 and it diverges otherwise.

Repeating Decimals. Every fraction has a decimal expansion that either terminates or re-

peats. Given a repeating decimal, we can represent it as a geometric series and �nd its sum.

Let s = .a1a2...an. Then 10ns = a1a2...an.a1a2...an. Subtracting, we �nd 10ns − s = a1a2...an.

Hence s = a1a2...an
10n−1 = a1a2...an

99...9
. This is the fractional form of the repeating decimal. For example,

.123123123... = 123
999

= 41
333

. Note also that .999... = 9
9
= 1. These are just di�erent representations

for the same number.
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Telescoping Series. Another special type of series is a telescoping series. In this type of series,

there is cancellation in the intermediate terms, so the series 'telescopes'.

n∑
k=1

(ak − ak+1) = (a1 − a2) + (a2 − a3) + ...+ (an − an+1) = a1 − an+1

If an → 0 as n→∞, the corresponding in�nite series converges to a1.

Consider an example. Using partial fractions, we can show 1
k(k+1)

= 1
k
− 1

k+1
. Thus

∞∑
k=1

1

k (k + 1)
=
∞∑
k=1

(
1

k
− 1

k + 1

)
= 1− lim

1

k + 1
= 1.

The Harmonic Series. A series can diverge even when the corresponding sequence converges

to 0. The most basic example of this is the Harmonic series
∑∞
k=1

1
k
. There are several ways to

show this. Assume to the contrary that the sum H =
∑∞
k=1

1
k
is �nite. Let Ho =

∑∞
k=1

1
2k−1

and He =
∑∞
k=1

1
2k

be the sums of the odd and even terms of the Harmonic series. Then these

sums are both �nite and H = Ho + He. Now He =
1
2

∑∞
k=1

1
k
= 1

2
H and Ho > He =

1
2
H. Thus

H = Ho +He > He +He = H, a contradiction, so the Harmonic series must diverge.

The Euler Product Formula. Consider the following product, which is expanded over all

prime numbers.
∞∏
p

1

1− 1
p

Each factor has the form of the sum of an in�nite geometric series. Thus we can multiply out the

in�nite product.

∞∏
p

1

1− 1
p

=
(
1 +

1

2
+

1

22
+

1

23
+ ...

)(
1 +

1

3
+

1

32
+

1

33
+ ...

)(
1 +

1

5
+

1

52
+

1

53
+ ...

)
· ··

Each term in the expanded product uses one term from each product. Each term is the reciprocal

of a product of powers of primes. By the Fundamental Theorem of Arithmetic, each integer can

be factored uniquely into primes. Thus each integer occurs exactly once in the denominator. Thus

we obtain the Harmonic series, which diverges.

∞∏
p

1

1− 1
p

= 1 +
1

2
+

1

3
+

1

4
+ ... =

∞∑
k=1

1

k
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The Riemann Zeta Function. By a very similar argument, it can be shown that

∞∏
p

1

1− 1
ps

=
∞∑
k=1

1

ks

which converges whenever s > 1 by the Integral Test. If we allow s to be a complex number, we

obtain the Riemann zeta function.

ζ (s) =
∞∑
k=1

1

ks

The infamous Riemann Hypothesis conjectures the values of the complex zeros of this function.

The Euler product explains why it is related to the distribution of the prime numbers.

Sum of Inverse Primes. Next we consider whether the in�nite series
∑ 1

p
of inverse primes

converges or diverges. We take a logarithm of the Harmonic series. Then

∞ = ln

( ∞∑
k=1

1

k

)
= ln

∞∏
p

1

1− 1
p

 =
∑
p

ln

(
p

p− 1

)
=
∑
p

ln

(
1 +

1

p− 1

)
<
∑
p

1

p− 1
< 1 +

∑
p

1

p

where x ≥ ln (1 + x) follows from the tangent line for ex at x = 0, ex ≥ 1 + x. Thus
∑ 1

p
diverges.

Note the Prime Number Theorem implies that pn ≈ n · lnn, so

∑
p

1

pn
≈
∞∑
n=2

1

n · lnn
≈
ˆ ∞
2

dn

n · lnn
= ln ln∞ =∞

by the Integral Test. However, pn > n · lnn, so this is not a proof.

Power Series. A power series is an in�nite series p (x) =
∑
an (x− a)n which can be thought

of as an in�nite polynomial. It will converge on an interval centered at a, perhaps for all real

numbers. The Taylor series of a function f (x) is the power series

∞∑
n=0

f (n) (a)

n!
(x− a)n

The derivation of this formula is typically explained in calculus II. Integrals and derivatives of

Taylor series provide additional power series of functions. The power series in the table below

are typically derived in calculus II. By plugging in speci�c constants, we �nd in�nite series for

many famous irrational numbers. These can be truncated to provide arbitrarily close decimal

approximations for them.
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A Table of In�nite Series for Irrational Numbers.

Power Series Plug in Resulting Series

ex =
∑∞
n=0

xn

n!
x = 1 e =

∑∞
n=0

1
n!

= 1 + 1 + 1
2
+ 1

6
+ 1

24
+ 1

120
+ ...

arctanx =
∑∞
n=0 (−1)

n x2n+1

2n+1
x = 1 π

4
=
∑∞
n=0

(−1)n
2n+1

= 1− 1
3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ ...

x = 1√
3

π
6
= 1√

3

∑∞
n=0

(−1)n
(2n+1)3n

= 1√
3

(
1− 1

3·3 +
1
5·9 −

1
7·27 + ...

)
ln (1 + x) =

∑∞
n=0 (−1)

n xn

n
x = 1 ln 2 =

∑∞
n=0

(−1)n
n

= 1− 1
2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ ...

1
2
ln
∣∣∣x+1
x−1

∣∣∣ = ∑∞
n=0

x2n+1

2n+1
x = 1

3
ln 2 = 2

3

∑∞
n=0

1
(2n+1)9n

= 2
3

(
1 + 1

3·9 +
1

5·81 +
1

7·729 + ...
)

(1 + x)m =
∑∞
n=0

(
m
n

)
xn m = 1

2√
1 + x =

∑∞
n=0

(
1/2
n

)
xn x = 1

√
2 =

∑∞
n=0

(2k−3)!!
(2k)!!

= 1 + 1
2
− 1

8
+ 3

48
− 15

384
+ 105

3840
− ...

Proof That e is Irrational. We can use the series for e to show that it is irrational.

Assume to the contrary that e is rational, so e = a
b
, where a and b are integers with b > 1. Let

x = b!

(
e−

b∑
n=0

1

n!

)
= b!

(
a

b
−

b∑
n=0

1

n!

)
= a (b− 1)!−

b∑
n=0

b!

n!
.

Now x is an integer, since n ≤ b for each term. Now x is positive since

x = b!

( ∞∑
n=0

1

n!
−

b∑
n=0

1

n!

)
=

∞∑
n=b+1

b!

n!
> 0.

Now

b!

n!
=

1

(b+ 1) (b+ 2) · · · (b+ (n− b))
≤ 1

(b+ 1)n−b

so employing a geometric series, we have

x =
∞∑

n=b+1

b!

n!
≤

∞∑
n=b+1

1

(b+ 1)n−b
=
∞∑
k=1

1

(b+ 1)k
=

1

b+ 1

(
1

1− 1
b+1

)
=

1

b
< 1.

Thus x is an integer with 0 < x < 1, a contradiction. Thus e is irrational.
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