COUNTING DERANGEMENTS

A derangement is a permutation (rearrangement) of n objects so that none of them has its original position. Let D_{n} be the number of derangements of length n. It is obvious that $D_{1}=0$ and $D_{2}=1$. It is not hard to see that $D_{3}=2$, since 312 and 231 are the only derangements of length 3 . For larger values of n, we need to count using the "Inclusion-Exclusion Principle".

There are a total of n ! permutations of n objects. We must subtract out all the permutations that fix at least one element. There are n elements that can be fixed, and the other elements can be permuted $(n-1)$! ways. However, this double-counts the permutations that fix at least two points, so we must add them back in. There are $\binom{n}{2}$ ways to fix two elements and $(n-2)$! ways to permute the others. Now each permutation that fixes at least three elements has been counted $1-3+\binom{3}{2}=1$ time, so these must be subtracted out. Proceeding similarly, we find

$$
\begin{gathered}
D_{n}=n!-n(n-1)!+\binom{n}{2}(n-2)!-\binom{n}{3}(n-3)!+\ldots+(-1)^{n} \\
D_{n}=\frac{n!}{0!(n-0)!} n!-\frac{n!}{1!(n-1)!}(n-1)!+\frac{n!}{2!(n-2)!}(n-2)!-\ldots+(-1)^{n} \frac{n!}{n!(n-n)!} \\
D_{n}=\sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!}=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}
\end{gathered}
$$

The probability that a given permutation is a derangement is

$$
P_{n}=\frac{D_{n}}{n!}=\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}
$$

This last expression is a Taylor polynomial for e^{x} evaluated at $x=-1$. Thus as n goes to infinity, we have

$$
P_{n} \rightarrow \frac{1}{e} \approx .3679
$$

In fact, the convergence is very quick, as D_{n} is the integer nearest to $\frac{n!}{e}$ for all $n>0$.

Exercises.

1. Use a counting argument (not the formula) to prove that $D_{n+1}=n\left(D_{n}+D_{n-1}\right)$.
2. How many permutations of n objects contain exactly one cycle of length one?
