ARCLENGTH AND INTEGRALS

To find the length of a straight line, you can use the distance formula, which comes from the Pythagorean Theorem. But finding the length of a curve requires an integral which comes from a Riemann sum based on the distance formula. If you have a curve defined by the parametric equation $(x, y)=(f(t), g(t)), a \leq t \leq b$, the length of the curve is given by

$$
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Calculating arclength leads to many interesting integrals which illustrate many different integration techniques. Here are some examples.

Name	Function	Hint
circle	$(\cos t, \sin t),[0,2 \pi]$	Trig Identity
spiral	$(t \cos t, t \sin t)$	Trig Substitution, Int. by Parts
logarithmic spiral	$\left(e^{t} \cos t, e^{t} \sin t\right)$	Trig Identity
cycloid	$(t-\sin t, 1-\cos t),[0,2 \pi]$	Power Reducing
	$(\cos t, t+\sin t)$	Power Reducing
astroid	$\left(\cos ^{3} t, \sin ^{3} t\right),\left[0, \frac{\pi}{2}\right]$	Trig Identity
involute	$(\cos t+t \sin t, \sin t-t \cos t)$	Trig Identity
	$(5 \cos t-\cos 5 t, 5 \sin t-\sin 5 t)$	Sum Identity, Power Reducing
semicubical parabola	$\left(t^{2}, t^{3}\right)$	Factor, Substitution
helix	$(\cos t, \sin t, t)$	Trig Identity
	$\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right)$	Trig Identity
	$\left(t, \sqrt{3} t^{2}, 2 t^{3}\right)$	Perfect Square

For vectors of the length more than 2, the natural generalization of the arclength formula is the following, which applies to the previous three examples.

$$
L=\int_{a}^{b}\left\|\vec{f}^{\prime}(t)\right\| d t
$$

A rectangular equation $y=f(x)$ can be parametrized as $(t, f(t))$. This converts the arclength formula to

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Name	Function	Hint
circle	$y=\sqrt{1-x^{2}},[-1,1]$	Arcsine
line	$y=m x+b$	Agrees with distance formula
parabola	$y=x^{2}$	Trig Substitution, Int. by Parts
logarithm	$y=\ln x$	Trig Substitution, Trig Identity
semicubical parabola	$y=x^{\frac{3}{2}}$	Substitution
	$y=x^{1.25}$	Resubstitution
astroid	$x^{\frac{2}{3}}+y^{\frac{2}{3}}=1,[0,1]$	Tricky Algebra
catenary	$y=\frac{1}{2}\left(e^{x}+e^{-x}\right)$	Perfect Square
	$y=\frac{x^{n+1}}{2(n+1)}+\frac{x^{-(n-1)}}{2(n-1)}, n \neq \pm 1$	Perfect Square
	$y=\frac{x^{2}}{4}-\frac{1}{2} \ln x$	Perfect Square
	$y=\ln (\cos x)$	Trig Identity
	$y=\ln \left(1-x^{2}\right)$	Partial Fractions

Many common functions and curves lead to integrals with no elementary antiderivative.
Such curves include x^{n} for most values of $n, \sin x, \cos x, \tan x$, and ellipses.
The arclength formula can also be converted for a polar equation $r=f(\theta)$ using $x=$ $r \cos \theta=f(\theta) \cos \theta$ and $y=r \sin \theta=f(\theta) \sin \theta:$

$$
L=\int_{a}^{b} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta
$$

Name	Function	Hint
circle	$r=\cos \theta,[0,2 \pi]$	Trig Identity
circle	$r=\sin \theta+\cos \theta,\left[-\frac{\pi}{4}, \frac{3 \pi}{4}\right]$	Trig Identity
cardioid	$r=1-\cos \theta,[0,2 \pi]$	Power Reducing
cardioid	$r=1+\cos \theta,[0,2 \pi]$	Power Reducing
spiral	$r=\theta$	Trig Substitution, Int. by Parts
spiral	$r=\theta^{2}$	Factor, Substitution
logarithmic spiral	$r=e^{\theta}$	Easy
parabola	$r=\frac{2}{1+\cos \theta}$	Factor, Power Reducing, Int. by Parts
	$r=\sin ^{2} \theta$	Factor, Trig Identity
	$r=\cos ^{3} \theta$	Factor, Trig Identity, Power Reducing
	$r=\sqrt{1+\sin ^{2} 2 \theta}$	Trig Identity

