ARCLENGTH AND INTEGRALS

To find the length of a straight line, you can use the distance formula, which comes from the Pythagorean Theorem. But finding the length of a curve requires an integral which comes from a Riemann sum based on the distance formula. If you have a curve defined by the parametric equation $(x, y) = (f(t), g(t)), a \le t \le b$, the length of the curve is given by

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt.$$

Calculating arclength leads to many interesting integrals which illustrate many different integration techniques. Here are some examples.

Name	Function	Hint
circle	$(\cos t, \sin t), [0, 2\pi]$	Trig Identity
spiral	$(t\cos t, t\sin t)$	Trig Substitution, Int. by Parts
logarithmic spiral	$(e^t \cos t, e^t \sin t)$	Trig Identity
cycloid	$(t - \sin t, 1 - \cos t), [0, 2\pi]$	Power Reducing
	$(\cos t, t + \sin t)$	Power Reducing
astroid	$\left(\cos^3 t, \sin^3 t\right), \left[0, \frac{\pi}{2}\right]$	Trig Identity
involute	$(\cos t + t\sin t, \sin t - t\cos t)$	Trig Identity
	$(5\cos t - \cos 5t, 5\sin t - \sin 5t)$	Sum Identity, Power Reducing
semicubical parabola	(t^2,t^3)	Factor, Substitution
helix	$(\cos t, \sin t, t)$	Trig Identity
	$(e^t \cos t, e^t \sin t, e^t)$	Trig Identity
	$\left(t,\sqrt{3}t^2,2t^3\right)$	Perfect Square

For vectors of the length more than 2, the natural generalization of the arclength formula is the following, which applies to the previous three examples.

$$L = \int_{a}^{b} \left\| \overrightarrow{f}'(t) \right\| dt.$$

A rectangular equation y = f(x) can be parametrized as (t, f(t)). This converts the arclength formula to

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx.$$

Name	Function	Hint
circle	$y = \sqrt{1 - x^2}, [-1, 1]$	Arcsine
line	y = mx + b	Agrees with distance formula
parabola	$y = x^2$	Trig Substitution, Int. by Parts
$\log arithm$	$y = \ln x$	Trig Substitution, Trig Identity
semicubical parabola	$y = x^{\frac{3}{2}}$	Substitution
	$y = x^{1.25}$	Resubstitution
astroid	$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1, \ [0,1]$	Tricky Algebra
catenary	$y = \frac{1}{2} \left(e^x + e^{-x} \right)$	Perfect Square
	$y = \frac{x^{n+1}}{2(n+1)} + \frac{x^{-(n-1)}}{2(n-1)}, n \neq \pm 1$	Perfect Square
	$y = \frac{x^2}{4} - \frac{1}{2}\ln x$	Perfect Square
	$y = \ln\left(\cos x\right)$	Trig Identity
	$y = \ln\left(1 - x^2\right)$	Partial Fractions

Many common functions and curves lead to integrals with no elementary antiderivative. Such curves include x^n for most values of n, $\sin x$, $\cos x$, $\tan x$, and ellipses.

The arclength formula can also be converted for a polar equation $r = f(\theta)$ using $x = r \cos \theta = f(\theta) \cos \theta$ and $y = r \sin \theta = f(\theta) \sin \theta$:

$$L = \int_{a}^{b} \sqrt{\left[f\left(\theta\right)\right]^{2} + \left[f'\left(\theta\right)\right]^{2}} d\theta.$$

Name	Function	Hint
circle	$r = \cos\theta, [0, 2\pi]$	Trig Identity
circle	$r = \sin\theta + \cos\theta, \left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$	Trig Identity
cardioid	$r = 1 - \cos\theta, [0, 2\pi]$	Power Reducing
cardioid	$r = 1 + \cos\theta, \ [0, 2\pi]$	Power Reducing
spiral	$r = \theta$	Trig Substitution, Int. by Parts
spiral	$r = \theta^2$	Factor, Substitution
logarithmic spiral	$r = e^{\theta}$	Easy
parabola	$r = \frac{2}{1 + \cos \theta}$	Factor, Power Reducing, Int. by Parts
	$r = \sin^2 \theta$	Factor, Trig Identity
	$r = \cos^3 \theta$	Factor, Trig Identity, Power Reducing
	$r = \sqrt{1 + \sin 2\theta}$	Trig Identity