
AREA BETWEEN CURVES

TOTAL AREA Suppose that a particle moves from point A to point B. The displacement of

the particle between points A and B is the distance between the two points. The distance traveled

by the particle is the length of the path it takes. These need not be the same.

Example. A particle moves right along the x-axis from (0, 0) to (0, 5). At this point, both the

displacement and distance traveled between these two points are 5. It then moves left to (0, 3).

The displacement between the origin and (0, 3) is 3, but the distance the particle traveled is 8.

Both quantities can be determined if we have a formula for the velocity function.

Example. A particle has velocity v (t) = 2 − t, 0 ≤ t ≤ 3. Graphing the function, we note

that it is nonnegative on [0, 2] and negative on (2, 3]. The distance traveled between two times will

be given by the area under the curve between those times. On [0, 2], the area under the curve is

2, while on [2, 3], the area is 1
2
below the x-axis. The displacement is the di�erence of these two,

2− 1
2
= 3

2
. The distance traveled is the sum 2 + 1

2
= 5

2
.

More generally, we can �nd areas under curves using an integral. Integration automatically

treats areas below the curve as negative, so the displacement between times a and b is just s (b)−
s (a) =

´ b
a
v (t) dt, where s (t) is the position function. To �nd the distance traveled, we need to

add the areas below the x-axis rather than subtract them. The integral we wish to evaluate is´ b
a
|v (t)| dt.
We generalize this idea with the following de�nition.

De�nition. The total area between f (x) and the x-axis on [a, b] is
´ b
a
|f (x)| dx.

To evaluate the total area, we use the following method adapted from the previous example.

1. Subdivide [a, b] where f (x) changes sign (typically, at zeros).

2. Find the antiderivative F (x).

3. Add absolute values of the integrals on the subintervals.

Example. Find the displacement and distance traveled by a particle with velocity v (t) =

3t2 − 18t+ 24 on [0, 5].

Solution. The position function s (t) = t3 − 9t2 + 24t is an antiderivative, so the displacement

is ˆ 5

0

v (t) dt =
(
t3 − 9t2 + 24t

)∣∣∣5
0
= 20.

We have v (t) = 3 (t− 2) (t− 4), which has zeros of 2 and 4 and is negative only on (2, 4). Note

that s (0) = 0, s (2) = 20, s (4) = 16, and s (5) = 20. Now the distance traveled is

´ 5
0
|v (t)| dt =

´ 2
0
|v (t)| dt+

´ 4
2
|v (t)| dt+

´ 5
4
|v (t)| dt

=
´ 2
0
v (t) dt−

´ 4
2
v (t) dt+

´ 5
4
v (t) dt

= [s (2)− s (0)]− [s (4)− s (2)] + [s (5)− s (4)]
= −s (0) + 2s (2)− 2s (4) + s (5)

= 28



Notice the pattern of coe�cients −1, 2,−2, 1 in the next-to-last line. This can be generalized

as follows.

Theorem. Let f (x) change signs at x1, ..., xn, where a < x1 < ... < xn < b. Then

ˆ b

a

|f (x)| dx = −F (a) + 2F (x1)− 2F (x2) + 2F (x3)− ...± 2F (xn)∓ F (b) , f > 0 on (a, x1) .

ˆ b

a

|f (x)| dx = F (a)− 2F (x1) + 2F (x2)− 2F (x3) + ...± 2F (xn)∓ F (b) , f < 0 on (a, x1) .

Example. Find the total area between f (x) = x
1
3 − x and the x-axis on [−1, 8].

Solution. We observe that 0, 1, and -1 are zeros of f (x). This helps �nd the factorization

f (x) = x
1
3

(
1− x 2

3

)
= x

1
3

(
1− x 1

3

) (
1 + x

1
3

)
. The antiderivative is F (x) = 3

4
x

4
3 − 1

2
x2. We note

that f is nonnegative on [0, 1] and negative elsewhere. Thus the total area is
´ 8
−1
|f (x)| dx =

F (−1)− 2F (0) + 2F (1)− F (8) = 1
4
+ 21

4
− (−20) = 83

4
.

AREA BETWEEN CURVESWhat if we want to �nd the area between two functions f (x)

and g (x)? If f (x) ≥ g (x), we would expect the area A to satisfy
´ b
a
g (x) dx + A =

´ b
a
f (x) dx.

This leads to the following de�nition.

De�nition. If f (x) ≥ g (x) on [a, b], the area between f (x) and g (x) on [a, b] is
´ b
a
(f (x)− g (x)) dx.

If f (x) and g (x) cross, the area between them is the total area
´ b
a
|f (x)− g (x)| dx.

Thus we see that the total area and area between curves are essentially the same concept, as

the total area of f (x) is the area between y = f (x) and y = 0, while the area between f (x) and

g (x) is the total area of f (x)− g (x).
Example. Find the area enclosed by y = x4 and y = 8x.

Solution. Graphing the functions, it appears that the functions have two intersections. To �nd

the intersections, set them equal and solve for x. We see x4 = 8x, so x4−8x = 0, so x (x3 − 8) = 0,

so x = 0 or x = 2. Since 8x ≥ x4 on [0, 2], the area is A =
´ 2
0
(8x− x4) dx =

(
4x2 − 1

5
x5

)∣∣∣2
0
= 48

5
.

Example. Find the area enclosed by y = sinx and y = cosx on [0, 2π].

Solution. The functions intersect when sinx = cosx. Then tanx = 1, so x = π
4
or x = 5π

4
. Now

the antiderivative of f (x) = cos x− sinx is F (x) = sinx+cosx. Now A =
´ 2π
0
|cosx− sinx| dx =

−F (0) + 2F
(
π
4

)
− 2F

(
5π
4

)
+ F (2π) = −1 + 2

√
2− 2

(
−
√
2
)
+ 1 = 4

√
2.

Note that if we had failed to remember the intersections, we would have incorrectly concluded

that the area is
´ 2π
0

(cosx− sinx) dx = 0.

Sometimes it is more convenient to integrate with respect to y.

Example. Find the area between y =
√
x, y = x− 2, and the x-axis.

Solution. Graphing the curves shows that there are two di�erent functions that make the
bottom of the region. We could split the region into two and evaluate two separate integrals. But
if we integrate with respect to y, we can do only one integral. The curves y =

√
x, y = x − 2

intersect when y = y2 − 2, so (y − 2) (y + 1) = 0. Only y = 2 yields a valid solution. Thus the

area is A =
´ 2
0
(y + 2− y2) dy =

(
1
2
y2 + 2y − 1

3
y3

)∣∣∣2
0
= 10

3
.


