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Abstract

A graph G is k-collapsible if δ (G) = k and any proper induced

subgraph has smaller minimum degree. Collapsible graphs can be

viewed as lower extremal graphs for monocore graphs. We investigate

the structure and basic properties of these graphs. A k-collapsible
graph necessarily has many vertices of degree k; we seek sharp bounds

on how many it must have.

1 Introduction

De�nition 1. The k-core of a graph G, Ck (G), is the maximal induced
subgraph H ⊆ G such that the minimum degree δ(H) ≥ k, if it exists.

The k-core can be found by iteratively deleting vertices of degree less
than k until none remain (the k-core algorithm).

De�nition 2. A graph is k-degenerate if its vertices can be successively
deleted so that when deleted, each has degree at most k. The degeneracy
D (G) of a graph G is the smallest k such that it is k-degenerate.

There are natural bounds on degeneracy: δ (G) ≤ D (G) ≤ ∆ (G).

De�nition 3. A monocore graph G is a graph with δ (G) = D (G).

This author began the study of monocore graphs in [1]. Many impor-
tant graph classes are monocore (regular graphs, trees, wheels, complete
multipartite, maximal outerplanar). To understand these graphs, we can
examine their extremal graphs.

One common technique for understanding a class of graphs is examining
its extremal graphs. That is, graphs in the class which either cannot have
any edges added or cannot have any edges deleted without ceasing to be in
that class. We will call these two types of extremal graphs maximal and
minimal extremal graphs, respectively.

We will �rst examine the maximal extremal k-monocore graphs. In fact,
these are just maximal k-degenerate graphs. Maximal k-degenerate graphs
are clearly k-monocore. A partial converse to this fact is true.
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Lemma 4. [3] Every k-monocore graph is contained in a maximal k-
degenerate graph.

Maximal k-degenerate graphs have been well-studied [5, 6, 4, 2]. This
author characterized the size and degree sequences of monocore graphs in
[3].

Proposition 5. [3] The size m of a k-monocore graph G of order n satis�es⌈
k · n

2

⌉
≤ m ≤ k · n−

(
k + 1

2

)
.

Theorem 6. [3] A nonincreasing sequence of integers d1, . . . , dn is the

degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only

if k ≤ di ≤ min {n− 1, k + n− i} and
∑
di = 2m, where m satis�es⌈

k·n
2

⌉
≤ m ≤ k · n−

(
k+1
2

)
.

2 k-Collapsible Graphs

Next we consider a variation on the lower extremal k-monocore graphs,
where instead of considering deleting an edge, we consider deleting vertices.

De�nition 7. A graph G is k-collapsible if it is k-monocore and has no
proper induced k-core.

This immediately implies that a k-monocore graph is k-collapsible if
and only if for every vertex v in G, G− v has no k-core.

For small values of k, the following characterizations of k-collapsible
graphs are immediate.

Proposition 8. Let G be a graph.

G is 0-collapsible if and only if G = K1.

G is 1-collapsible if and only if G = K2.

G is 2-collapsible if and only if G is a cycle.

The structure of k-collapsible graphs is considerably more complicated
for k > 2.

Collapsible graphs are interesting in part because every k-monocore
graph contains one.

Proposition 9. Every k-monocore graph G contains a k-collapsible graph

as an induced subgraph. Indeed, every component of G contains such a

subgraph.
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Proof. If G has order n = k + 1, then the unique k-monocore graph of
that order, G = Kk+1 is k-collapsible. Assume the result holds for all k-
monocore graphs with order at most r, and let G have order r+ 1. If G− v
has no k-core for all v in G, then G is k-collapsible. If not, then there is
some vertex v in G so that G−v has a k-core. Let H be the k-core of G−v.
Then H is an induced subgraph of G with order at most r, so by induction
it contains a k-collapsible subgraph. The �nal statement holds since every
component of a k-monocore graph is k-monocore.

We can o�er a characterization of sorts for k-collapsible graphs.

De�nition 10. A barrier in a k-monocore graph is a minimal cutset
S ⊂ V (G) such that for some component H of G− S, every vertex v of S
has dG−H (v) ≥ k.

Note that every vertex in a barrier of a k-monocore graph G necessarily
has degree greater than k in G.

Proposition 11. A k-monocore graph G is collapsible if and only if it does

not have a barrier.

Proof. If G has a barrier S and corresponding component H, then the
vertices of G −H all have degree at least k. Thus G has a proper k-core,
so it is not collapsible.

If G is not collapsible, then it has a proper induced subgraph F such
that is a k-core. Then the vertices of F adjacent to vertices of G−F must
be a barrier.

Checking every set of vertices, or even every cutset of vertices of degree
greater than k is not e�cient. It is easier to determine whether G has a
barrier by running the k-core algorithm on G− v for all v.

A barrier need not be a large set or have large degrees. Indeed, for all
k ≥ 3, there is a k-monocore graph G with a barrier of one vertex of degree
k + 1 or k + 2. If k is odd, a barrier need only have one vertex of degree
k + 1, while if k is even, it need have no more than two. In the graphs
below, {v} is a barrier. These constructions generalize for k > 3.

v v

Several results on collapsible graphs follow immediately.
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Corollary 12. A regular graph is collapsible if and only if it is connected.

Let G be a graph with δ (G) ≥ k and v ∈ V (G). Then Ck (G− v) =
Ck (G)− v if and only if every neighbor of v has degree at least k + 1.

If G is k-collapsible, then every vertex of G is adjacent to a vertex of

degree k. This implies that the vertices of degree k of a k-collapsible graph

G form a total dominating set of G.

It is not the case that if the vertices of degree k form a total dominating
set, the graph is collapsible. This can be seen, for example, in the graphs
constructed above. Also, the graph formed by adding a perfect matching
between the vertices of Cn and Kn, n > 3, is not 3-collapsible, even though
the total dominating set is connected.

Theorem 13. For k ≥ 1, the size of a k-collapsible graph G of order n
satis�es ⌈

k · n
2

⌉
≤ m (G) ≤ (k − 1) · n−

(
k

2

)
+ 1.

Proof. The lower bound follows since the sum of degrees is at least k · n.
For the upper bound, let G be k-collapsible and e an edge of G incident

with a vertex v of degree k. Then G−e is k−1-degenerate, since dG−e (v) <
k and G has no proper induced k-core. Then G−e is contained in a maximal
k−1-degenerate graphH, and G ⊆ H+e. Thusm ≤ (k − 1)·n−

(
k
2

)
+1.

The upper bound of this theorem is sharp. For example, for k ≥ 3 the
graph G = Cn−k+2 + Kk−2 achieves the upper bound and is k-collapsible
since every vertex on the cycle has degree k andG has no k-core not contain-
ing one of them. This example also shows that for all k, n with 3 ≤ k ≤ n−1
there is a k-collapsible graph with maximum degree n− 1. Along with the
cycle Cn, this shows that for all k, n with 2 ≤ k ≤ n − 1 there is a k-
collapsible graph of order n.

3 Degrees of k-Collapsible Graphs

It is natural to ask how many vertices of degree k a k-collapsible graph
must contain.

Theorem 14. For k ≥ 3, every k-collapsible graph G of order n has at

least
⌈

2
2k−1n

⌉
vertices of degree k, and hence at most

⌊
2k−3
2k−1n

⌋
vertices of

degree more than k.

G−H

H
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Proof. Let G be k-collapsible, k ≥ 3. Then each vertex (including those of
degree k) is adjacent to a vertex of degree k. Consider a component H of
the graph induced by the vertices of degree k, which has order r ≥ 2. Since
it is connected, it has size at least r− 1, so there are at most kr− 2 (r − 1)
edges between H and G−H. At least two of these edges must be incident
with the same vertex in G−H for G to collapse, so H has at most kr−2r+1
neighbors in G −H. Now kr−2r+1

r is maximized on r ≥ 2 when r = 2, in
which case the maximum is k − 3

2 . Thus if there are s vertices of degree k
in G, there are at most

(
k − 3

2

)
s vertices of larger degree. Thus G has at

least s

(k− 3
2 )s+s

= 1
k− 1

2

= 2
2k−1 of its vertices with degree k.

Lemma 15. A k-collapsible graph of order n ≥ k + 1 contains at least

k2 − k − 2− (k − 3)n vertices of degree k.

Proof. The size of a k-collapsible graph is at most (k − 1) · n −
(
k
2

)
+

1, so the sum of degrees is at most 2
[
(k − 1) · n−

(
k
2

)
+ 1
]
. Since the

minimum degree is k, there are at most 2
[
(k − 1) · n−

(
k
2

)
+ 1
]
− kn =

(k − 2)n − k2 + k + 2 vertices of degree more than k, and at least n −(
(k − 2)n− k2 + k + 2

)
= k2 − k − 2− (3− k)n of degree k.

This raises the question of when these bounds are attained.

Theorem 16. The minimum number of vertices of degree 3 in a 3-collapsible

graph of order n ≥ 4 is max
{

4,
⌈
2
5n
⌉}

.

Proof. For 3-collapsible graphs, Lemma 15 gives a bound of 4. For orders
4 ≤ n ≤ 7, this is achieved for the graphs above. Consider the graphs
G4 = P4 +K1, G5, G6, and G7 de�ned in the �gure below.

We construct larger graphs by arranging some of these graphs together
in a cycle and identifying vertices of degree two (or 2 and 3) in consecutive
graphs. For order 8, we use two copies of G4. For order 9, we use a G4 and
a G5. In general, for n ≥ 8, we use

⌈
n−8
5

⌉
copies of G5 and either one G4,

G5, G6, G7 or two G4s to add the remaining vertices. These graphs have⌈
2
5n
⌉
degree 3 vertices.
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To see that these graphs are all 3-collapsible, we note that each vertex
of degree more than 3 is adjacent to one of degree 3. Each vertex of degree
3 is adjacent to another of degree 3. Each connected set of vertices of
degree 3 has a common neighbor of larger degree, so all vertices in their Gi

collapse. This causes the collapse of a vertex in Gi+1, and eventually the
entire graph.

G4 G5 G6

G7

A 3-collapsible graph of order 15 with only six vertices of degree 3 is
displayed below.

Theorem 17. The minimum number of vertices of degree 4 in a 4-collapsible

graph of order n ≥ 5 is max
{

10− n,
⌈
2
7n
⌉}

.

Proof. For 4-collapsible graphs, Lemma 15 gives a bound of 10 − n. For
orders 5 ≤ n ≤ 7, this is achieved for K5, K6−2K2, and P3 ∪ P4. Consider
the graphs G5 = P4 + K2, G6, G7, G8, G9, and G10 de�ned in the �gure
below.

We construct larger graphs by arranging some of these graphs together
in a cycle and identifying vertices of degree two or three in consecutive
graphs. For orders 8, 9 and 10, we use G8, G9 and G10, in each case
identifying the two vertices of degree 3. For n ≥ 11, we use

⌈
n−11

7

⌉
copies

of G7 and either one G5, G6, G7, G8, G9, G10 or a G5 and G6 to add the
remaining vertices. Each of these graphs has

⌈
2
7n
⌉
vertices of degree 4.
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To see that these graphs are all 4-collapsible, we note that each vertex
of degree more than 4 is adjacent to one of degree 4. Each vertex of degree
4 is adjacent to another of degree 4. Each connected set of vertices of
degree 4 has a common neighbor of larger degree, so all vertices in their Gi

collapse. This causes the collapse of a vertex in Gi+1, and eventually the
entire graph.

G5 G10

G6 G9

G7 G8

Conjecture 18. The minimum number of vertices of degree k in a k-

collapsible graph of order n ≥ k+1 is max
{
k2 − k − 2− (k − 3)n,

⌈
2

2k−1n
⌉}

.

For k = 5, this claims that the minimum number of vertices of degree 5
in a 5-collapsible graph of order n ≥ 6 is max

{
18− 2n,

⌈
2
9n
⌉}
. For larger

values of k , we can show that the bound of Theorem 14 is sharp.

Theorem 19. The bound in Theorem 14 is sharp. In particular, for every

k ≥ 5 and order n = (2k − 1) i, i ∈ Z+, there is a k-collapsible graph that

has
⌊
2k−3
2k−1n

⌋
vertices of degree more than k.

Proof. We will show that when k is odd, there is a graph G of order 2k
with two adjacent vertices of degree k with one common neighbor and
2k − 3 total neighbors, of which 2k − 2 have degree k + 1. Also, G has
two nonadjacent vertices of degree k+1

2 with no common neighbors. If such

a graph exists, the two vertices of degree k+1
2 can be identi�ed, forming

one vertex of degree k + 1. If the two vertices with degree k are then
deleted, the resulting graph H has degree sequence (k)2k−4 (k − 1)1. Using
the characterization of degree sequences of monocore graphs (Theorem 6),
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it is easily checked that this sequence satis�es the conditions for that of a
k − 1-monocore graph. Thus H exists, so G does also.

If k is even, we want a graph of order 2k with two adjacent vertices of
degree k with one common neighbor and 2k − 3 total neighbors, of which
2k−2 have degree k+1. It must also have two nonadjacent vertices of degree
k+2
2 with no common neighbors. If such a graph exists, the two vertices

of degree k+2
2 can be identi�ed, forming one vertex of degree k + 2. If the

two vertices with degree k are then deleted, the resulting graph has degree
sequence (k + 1)1 (k)2k−3 (k − 1)1. Using Theorem 6, it is easily checked
that this sequence satis�es the conditions for that of a k − 1-monocore
graph. Thus H exists, so G does also.

In either case, we use i copies of G and identify consecutive vertices
of degree k+1

2 or k+2
2 to form a graph of order (2k − 1) i. In this graph,⌈

2
2k−1n

⌉
vertices have degree k, and

⌊
2k−3
2k−1n

⌋
vertices have degree more

than k. Each vertex of degree more than k is adjacent to one of degree k,
each vertex of degree k is adjacent to another one, and each pair of adjacent
vertices of degree k have a common neighbor. Without this pair, the copy
of G containing them collapses, and so does the entire graph. Hence it is
k-collapsible.

It is likely possible to �ll in the other orders for all larger k, but no
simple construction to achieve this is apparent.
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