
COUNTING TECHNIQUES AND IDENTITIES

1 Basic Counting Formulas

In combinatorics, we often wish to count the number of objects in a set. In graph theory, we
may wish to �nd the number of some type of graph or the number of some type of subgraph of a
graph. We begin with a basic fact.
Theorem 1. The Counting Product Rule

If there are k independent choices, which can be made in ni ways, 1 ≤ i ≤ k, then there are∏
ni total ways to make the choices.

Example. A Michigan license plate has three letters followed by four numbers. There are
263104 = 175, 760, 000 possible license plates.
Example. How many positive integer factors does 360 have?
Solution. The unique prime factorization of 360 is 23325. There are four possibilities (0, 1, 2,

or 3) for how many 2's can be in a factor. Similarly, there are three possibilities for the 3's, and
two for the �ve. Thus there are 4 · 3 · 2 = 24 total factors. Note that even if we listed all 24, we
could not be sure we had them all without a counting argument.

Since any positive integer has a unique prime factorization n = pn1
1 ···p

nk
k , the number of positive

integer factors τ (n) of n is τ (n) = (n1 + 1) · · · (nk + 1).
Example. How many subsets does a set with n elements have?
Solution. For each element, there are two possibilities. It is either in or out of a subset. This

is true for each element, so there are 2n subsets.
Suppose that we want to know how many ways there are to select k objects out of n possible

objects. There are two questions we need to ask.

• Are repetitions allowed?

• Is order important?

If repetitions are allowed and order is important, then there are n possibilities for the �rst choice,
n for the second choice, etc. Thus there are nk = n · ... · n ways to select the k objects.

Suppose repetitions are not allowed and order is important, and consider the special case n = k.
Such an arrangement of n objects is called a permutation. There are n possibilities for the �rst
choice. There are n − 1 for the second choice since one object has already been picked and is no
longer available. Continue similarly down to 1 possibility for the last choice. Thus there are a
total of n (n− 1) (n− 2) · · · 3 · 2 · 1 = n! ways to order the objects.

Corollary 2. There are n!
(n−k)! ways to list k of n distinct objects. In particular, there are n! permu-

tations of n objects.

Proof. There are n (n− 1) · · · (n− k + 1) = n (n− 1) · · · (n− k + 1) (n−k)···3·2·1
(n−k)···3·2·1 = n!

(n−k)! possible

lists.

Example. In a race with ten horses, there are 10 · 9 · 8 = 720 possibilities for win, place, and
show.

Factorials can be de�ned recursively as 0! = 1 and n! = n · (n− 1)! for any positive integer n.
Computing the �rst few values, we have the following.
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n 1 2 3 4 5 6 7 8
n! 1 2 6 24 120 720 5040 40320

It is apparent that factorials grow very quickly. Stirling's approximation for n! is n! ≈
√
2πn

(
n
e

)n
.

This can be used to show that n! grows faster than any exponential function, but slower than nn.
What if there are repeated elements in a permutation? Suppose a of n elements are the same. If

we treat each as distinct, there are n! permutations. But the a elements are permuted in a! ways,
so each ordering occurs a! times. Thus we must divide by a!, so there are n!

a!
distinct permutations.

We can generalize this.

Theorem 3. Suppose n objects with k distinct types repeated ai times, 1 ≤ i ≤ k, with a1+...+ak = n
are ordered. There are n!

a1!···ak!
ways to order them.

Example. A multiset is a collection of objects where repetition is allowed. Consider the
multiset {A,A,A,B,B,C}. There are 6!

3!2!1!
= 60 orders for this set.

How many ways can k objects be chosen from a set of n objects if repetition is not allowed
order is unimportant? We call this the number of combinations �n choose k�, with notation

(
n
k

)
.

We have k chosen and n− k unchosen elements, which justi�es the following.

Corollary 4. The number of ways k objects can be chosen from a set of n objects if repetition is not
allowed order is unimportant is(

n

k

)
=

n!

k! (n− k)!
=
n (n− 1) · ... · (n− k + 1)

k!
.

Example. In a class of seven students, there are
(
7
3

)
= 7·6·5

3·2·1 = 35 possible groups of three
students.

How many ways can k objects be chosen from a set of n objects if repetition is allowed and
order is unimportant? Every choice of k objects from a multiset can be thought of as putting x's
in bins corresponding to the elements. Equivalently, we could �nd the number of orderings of k
x's and n− 1 dividers. This justi�es the following result.

Corollary 5. The total number of unordered choices of k elements from a set of n elements, allowing
repetition, is

(
k+n−1

k

)
.

Suppose we want to �nd how many ways are there to write a positive integer N as a sum of p
whole numbers. Let the p whole numbers be bins and distribute the N 1's. Then there are

(
N+p−1

N

)
possible sums.
Example. If N = 4 and p = 3, we have

(
4+3−1

4

)
=
(
6
4

)
= 15 sums.

The formulas for the number of ways to select k of n objects are summarized in the following
table.

Repetitions Allowed No Repetitions
Order Important nk n!

(n−k)!
Order Unimportant

(
n+k−1
k−1

) (
n
k

)
= n!

k!(n−k)!

Exercises.

1. Simplify (n+1)!
n! .

2. Which is bigger, (2n)! or 2 · n! ?
3. Is there a natural choice for the value of (−1)! ? If so, what is it?
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4. Express the product (2n− 1) (2n− 3) · · · 5 · 3 · 1 using factorials.
5. How many di�erent factors do the following numbers have?
a. 105 b. 2 · 3 · 5 · 7 · 11 c. 210 d. 120
6. How many di�erent factors do the following numbers have?
a. 48 b. 1729 c. 2k d. 10k

7. How many 7-digit numbers have
a. No 0
b. No repeated digits
c. No consecutive repeated digits
8. A math class has 7 students.
a. How many di�erent orders are there for three students to make class presentations?
b. How many di�erent groups of three students could make a presentation?
9. How many n-digit positive integers are there?

10. A combination lock requires three distinct numbers out of 20 be entered. If you forgot the combination,

how many possible combinations are there to try?

11. Out of a group of 10 students, how many di�erent groups are there that could go on a �eld trip?

12. Out of eight runners, how many possibilities are there for the winners of the gold, silver, and bronze medals?
13. How many paths of length 2n are there from the point (0, 0) to (n, n) in a grid?
14. The Catalan numbers are a sequence that occurs in many counting problems with formula Cn = 1

n+1

(
2n
n

)
.

a. Calculate Cn for 0 ≤ n ≤ 5.
b. Use Stirling's approximation to �nd an approximation for Cn.
15. How many ways are there to write 5 as the sum of three whole numbers?
16. How many ways are there to write 8 as the sum of four whole numbers?

2 Combinatorial Identities

Consider the expression (x+ y)n (n an integer). We can use the distributive property to com-
pletely expand it out. Each term of the resulting sum has one factor being either x or y from each
of the n binomials. For example,

(x+ y)3 = xxx+ xxy + xyx+ xyy + yxx+ yxy + yyx+ yyy = x3 + 3x2y + 3xy2 + y3.

Thus there will be 2n terms, some of which will be equivalent. The term xkyn−k will occur every
time exactly k of the x's are chosen from the n binomials. Thus it will occur

(
n
k

)
times. This

justi�es the following theorem.
Theorem 6. [Binomial Theorem] Let n be a nonnegative integer. Then

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

This is the Binomial Theorem. It can also be proved by induction. The Binomial Theorem has
several immediate consequences.

Corollary 7. Let n be a nonnegative integer. Then
∑n

k=0

(
n
k

)
= 2n.

Proof. Plug x = y = 1 into the Binomial Theorem.

Corollary 8. Let n be a nonnegative integer. Then
(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ ... =

(
n
1

)
+
(
n
3

)
+
(
n
5

)
+ ... = 2n−1.

Proof. Plug x = −1 and y = 1 into the Binomial Theorem. Then

0 = (−1 + 1)n =
n∑

k=0

(
n

k

)
(−1)k =

(
n

0

)
−
(
n

1

)
+

(
n

2

)
−
(
n

3

)
+

(
n

4

)
− ...
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so
(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ ... =

(
n
1

)
+
(
n
3

)
+
(
n
5

)
+ ... Now both sides together sum to 2n, so each individually

sums to 2n−1.

The numbers
(
n
k

)
are known as the binomial coe�cients. They can be arranged as follows,

where the rows give increasing values of n, and the diagonals give increasing values of k.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

This is called Pascal's Triangle. Corollary 7 can be interpreted as �nding the sums of the rows
of Pascal's Triangle. There are many other identities related to Pascal's Triangle and binomial
coe�cients. We introduce two techniques for generating and proving combinatorial identities.

De�nition 9. A partition of a set S is a collection of nonempty, mutually disjoint subsets Si of S
whose union is S. The Counting Sum Rule says that for any partition of S, the cardinality of S is
the sum of the cardinalities of the subsets in the partition,|S| =

∑
|Si|.

Counting Two Ways. The �rst new technique is partitioning a set in two di�erent ways, and
using each partition to �nd an expression for the cardinality of the set. Since both expressions
count the same cardinality, they must be equal, proving a combinatorial identity. This technique
is known as Counting Two Ways.

Pascal's Triangle can be simply generated by noting that
(
n
0

)
=
(
n
n

)
= 1, and each number in its

interior is the sum of the two numbers diagonally above it. For example, 10 = 4 + 6. This works
because of the following identity.

Proposition 10. [Pascal's Formula] For any integers n ≥ 1 and k,
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

Proof. Consider the set of all k-element subsets of [n]. There are
(
n
k

)
of them. Partition the set

into the subsets containing 1 and not containing 1. There are
(
n−1
k−1

)
subsets containing 1 and

(
n−1
k

)
subsets not containing 1. Summing them proves the identity.

This identity, and all the others in this section can also be proved algebraically. However, there
is good reason to prefer the combinatorial approach. A combinatorial argument gives a natural
explanation of the result that algebra does not. Counting arguments are also a natural technique
for generating new combinatorial identities. Algebra can prove existing identities, but it does not
naturally suggest new identities.

The row sum identity (Corollary 7) proved above also has a natural combinatorial interpretation
and proof.

Proposition 11. Let n be a nonnegative integer. Then
∑n

k=0

(
n
k

)
= 2n.

Proof. Consider the set of all subsets (the power set) of [n], which has cardinality 2n. Partition this
set based on the cardinalities of the subsets. There are

(
n
k

)
subsets of cardinality k, so summing

from 0 to n counts all subsets.

Another identity comes from summing a diagonal of Pascal's Triangle up to a point.
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Proposition 12. We have
(
k
k

)
+
(
k+1
k

)
+
(
k+2
k

)
+ ...+

(
n
k

)
=
(
n+1
k+1

)
.

Proof. Consider the set of all k + 1-element subsets of [n+ 1], which has cardinality
(
n+1
k+1

)
. The

largest number chosen must be between k + 1 and n + 1. Partition the set based on the largest
number. If it is k + i+ 1, there are

(
k+i
k

)
ways to choose the other k elements. Summing between

k and n counts all the subsets.

If k = 1, this identity reduces to 1 + 2 + 3 + ...+ n =
(
n
2

)
. This identity is a common example

used to teach proof by mathematical induction. While this is a valid method of proof, it does not
explain where the identity comes from, or what it means, as does the counting argument.
Counting by Bijection. In this counting technique, we �nd a bijection between the elements

of two distinct �nite sets. This shows that they have the same cardinality. If we can count both
sets, we establish a combinatorial identity. If we can count only one of the sets, we �nd a formula
for the other set's cardinality.

This technique is di�erent from counting two ways. In that technique, we partition one set in
two di�erent ways; in counting by bijection, we �nd a bijection between two (usually) di�erent
sets. In the �rst technique, the problem is �nding the partitions, in the second the problem is
�nding the bijection and then counting one or both sets.

Proposition 13. Pascal's triangle is symmetric:
(
n
k

)
=
(

n
n−k

)
.

Proof. Establish a bijection between the set of k-element subsets of [n] and the set of n−k-element
subsets of [n] where each set is mapped to its complement in [n]. The �rst set has

(
n
k

)
elements,

and second has
(

n
n−k

)
elements. The bijection shows these quantities are equal.

The alternating sum identity for Pascal's triangle also has a combinatorial proof.

Proposition 14. We have
(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ ... =

(
n
1

)
+
(
n
3

)
+
(
n
5

)
+ ....

Proof. Consider the set of subsets of [n] with even cardinality and the set of subsets of [n] with
odd cardinality. They have cardinalities

(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ ... and

(
n
1

)
+
(
n
3

)
+
(
n
5

)
+ ..., respectively.

Establish a bijection between them by deleting n from a subset if it appears and adding it if it
does not. This function always changes the cardinality by one and it is its own inverse, so it is a
bijection.

Exercises.

1. Expand the binomial (x+ 2y)
3
.

2. Expand the binomial (2x+ 3y)
5
.

3. Generate the next two rows of Pascal's triangle.

4. Color the odd and even numbers in Pascal's triangle di�erently. What pattern do you �nd?

5. Verify
(
n
k

)
=
(

n
n−k

)
algebraically.

6. Verify
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
algebraically.

7. Find the sums of the �rst ten '13 slope' diagonals of Pascal's triangle: 1, 1, 1+1, 1+2, 1+3+1, ... What

familiar pattern do you �nd? Explain why this works.

8. Show that the rows of Pascal's triangle increase from k = 0 to k =
⌊
n+1
2

⌋
and decrease from k =

⌈
n+1
2

⌉
to

k = n.
9. Partition the power set of [n] according to the largest element in each subset. What combinatorial identity

follows from this?
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10. Consider mapping each subset of [n] to its complement. Can this be used to prove Proposition 14?
11. Show that k

(
n
k

)
= n

(
n−1
k−1

)
using

a. counting two ways (hint: consider choosing committees with a chairman)
b. algebra
12. Show that

∑n
k=1 k

(
n
k

)
= n2n−1 using

a. counting two ways (hint: consider choosing committees with a chairman)
b. calculus and the Binomial Theorem
13. (VandeMonde's Identity) Show that

(
n+m
k

)
=
∑k

i=0

(
n
i

)(
m
k−i

)
using counting two ways.

14. Show that
(
n
m

)(
n−m
k

)
=
(
n
k

)(
n−k
m

)
, k +m ≤ n, using counting two ways.

15. Show that
(
2n
n

)
=
∑n

k=0

(
n
k

)2
.

16. + Use induction on n to prove the Binomial Theorem.

3 Inclusion-Exclusion

Recall that the Counting Sum Rule says that for any partition of S into sets Si, |S| =
∑
|Si|.

But what if the subsets are not disjoint? Suppose we have sets S and T and we want to �nd
the cardinality of their union. We can add their cardinalities, but we must also subtract out the
cardinality of their intersection. Thus |S ∪ T | = |S|+ |T | − |S ∩ T |.
Example. A class contains 14 students who play soccer, 17 who play baseball, and 4 who play

both. How many play a sport?
Solution. There are 14 + 17− 4 = 27 students who play a sport.
It is possible that sets S and T are contained in a universal set. We can adapt the previous

formula for this case.
Example. A discrete math class contains 27 students, including 8 math majors, 20 computer

science majors, and 4 math/CS double majors. How many students are math or CS majors? How
many are neither?
Solution. There are 8 + 20 − 4 = 24 math or CS majors. Thus 27 − 24 = 3 students are

neither.
What if we have three sets that overlap? To �nd the cardinality of their union, we must add

their cardinalities and subtract out the cardinalities of their three intersections. But this excludes
their mutual intersection, so we must add its cardinality back in. Thus we obtain the formula

|R ∪ S ∪ T | = |R|+ |S|+ |T | − |R ∩ S| − |R ∩ T | − |S ∩ T |+ |R ∩ S ∩ T | .

Note that in the formula on the right, we include (add) some cardinalities, and exclude (subtract)
some others. We can generalize this to an arbitrary number of sets.

Theorem 15. [Inclusion-Exclusion Principle] Let S1,...,Sn be sets. Then |S1 ∪ ... ∪ Sn| is the sum
of the cardinalities of all intersections of odd numbers of sets minus the cardinalities of all inter-
sections of even numbers of sets. That is,∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ = ∑
∅6=J⊆[n]

(−1)|J |−1
∣∣∣∣∣⋂
j∈J

Sj

∣∣∣∣∣.
Proof. Let a be an element of r of the sets. Then it is contained in

(
r
m

)
of the intersections of m

sets. Thus a is counted
(
r
1

)
−
(
r
2

)
+
(
r
3

)
− ...+ (−1)r+1 (r

r

)
times on the right, which equals

(
r
0

)
by

Proposition 14. Thus each element in the union on the left is counted once on the right.

Many problems in number theory can be addressed using the Inclusion-Exclusion Principle.
Example. How many positive integers at most 300 are divisible by 2, 3, or 5?
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Solution. There are
⌊
300
n

⌋
integers in the range divisible by n. We must add the number

divisible by 2, 3, and 5. We must subtract out the number divisible by 2 · 3, 2 · 5, and 3 · 5. Finally
we must add back in the number divisible by 2 · 3 · 5. The number is⌊

300

2

⌋
+

⌊
300

3

⌋
+

⌊
300

5

⌋
−
⌊
300

2 · 3

⌋
−
⌊
300

2 · 5

⌋
−
⌊
300

3 · 5

⌋
+

⌊
300

2 · 3 · 5

⌋
= 220

De�nition 16. The prime-counting function π (n) is the number of primes that are at most n.

Example. Calculate π (48).
Solution. Composite integers at most 48 have factors of 2, 3, or 5. There are 48

2
+ 48

3
+
⌊
48
5

⌋
−

48
6
−
⌊
48
10

⌋
−
⌊
48
15

⌋
+
⌊
48
30

⌋
= 35 such integers. Thus π (48) = 48− 35 + 3− 1 =15, since 2, 3, and 5

must be included, and 1 must be excluded.

De�nition 17. Euler's phi function φ (n) is the number of integers between 1 and n that are relatively
prime to n.

Example. Calculate φ (72).
Solution. Note that 72 = 2332. We must subtract out the multiples of 2 and 3, and add back

the multiples of 6. Thus φ (72) = 72− 72
2
− 72

3
+ 72

6
= 24.

A similar approach can be used to evaluate φ for any integer n = pa11 p
a2
2 · · · parr . Using the

Inclusion-Exclusion Principle, we see

φ(n) = n−
r∑

i=1

n

pi
+

∑
1≤i<j≤r

n

pipj
− ... = n

r∏
i=1

(
1− 1

pi

)
where the latter equality follows from distributing out the product.
Example. Using the formula, we see φ (72) = 72

(
1− 1

2

) (
1− 1

3

)
= 721

2
2
3
= 24.

Recall that a function is onto if its domain is the same as its codomain.
Example. How many onto functions are there from [5] to [3]?
Solution. There are 35 total functions from [5] to [3]. There are 25 functions that don't have

1 in the range. A similar result holds for functions whose ranges exclude 2 or 3. There is one
function that doesn't have 1 and 2 in its range. The number of onto functions from [5] to [3] is
35 − 3 · 25 − 3 · 1 = 150.

In general, there are (n− k)m functions from [m] to a set with cardinality n− k, and there are(
n
k

)
choices of k elements to exclude from [n]. Generalizing the argument in the example shows

that the number of onto functions from [m] to [n], m ≥ n, is

nm −
(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m − ...+ (−1)n−1

(
n

n− 1

)
1m.

De�nition 18. The Stirling number of the second kind, S (m,n), is the number of ways to partition
a set of m objects into n nonempty subsets.

Note that there are n! ways to permute n distinct boxes. Thus the number of onto functions
from [m] to [n] equals n! · S (m,n). Thus

S (m,n) =
1

n!

n−1∑
i=0

(−1)i
(
n

i

)
(n− i)m .

Note that Stirling numbers of the �rst kind are the solution to a di�erent counting problem.
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De�nition 19. A derangement is a permutation of n objects so that none of them has its original
position. Let Dn be the number of derangements of length n.

It is obvious that D1 = 0 and D2 = 1. It is not hard to see that D3 = 2, since 312 and 231 are
the only derangements of length 3. For larger values of n, we use the Inclusion-Exclusion Principle.

There are a total of n! permutations of n objects. We must subtract out all the permutations
that �x at least one element. There are n elements that can be �xed, and the other elements can
be permuted (n− 1)! ways. However, this double-counts the permutations that �x at least two
points, so we must add them back in. There are

(
n
2

)
ways to �x two elements and (n− 2)! ways

to permute the others. Proceeding similarly, we �nd

Dn = n!− n (n− 1)! +

(
n

2

)
(n− 2)!−

(
n

3

)
(n− 3)! + ...+ (−1)n

Dn =
n!

0! (n− 0)!
n!− n!

1! (n− 1)!
(n− 1)! +

n!

2! (n− 2)!
(n− 2)!− ...+ (−1)n n!

n! (n− n)!

Dn =
n∑

i=0

(−1)i n!
i!

= n!
n∑

i=0

(−1)i

i!

The probability that a given permutation is a derangement is

Pn =
Dn

n!
=

n∑
i=0

(−1)i

i!
.

This last expression is a Taylor polynomial for ex evaluated at x = −1. Thus as n goes to in�nity,
we have

Pn →
1

e
≈ .3679.

In fact, the convergence is very quick, as Dn is the integer nearest to n!
e
for all n > 0.

Related Terms: partition number, Bell number, Catalan number, Stirling number of the �rst
kind, generating function, recurrence relation

Exercises.

1. A college has 100 students who play soccer, 50 who play baseball, and 10 who play both. How many play either?
2. A college has 1250 students who took calculus, 230 who took discrete math, and 120 who took both. How

many took either?
3. A discrete math class contains 35 students, including 12 math majors, 28 computer science majors, and 7

math/CS double majors. How many students are math or CS majors? How many are neither?
4. A survey shows 95% of households have a television, 90% have internet access, and 87% have both. How

many have neither?
5. Find the number of integers between 1 and 100 divisible by 3 or 5.
6. Find the number of integers between 1 and 200 divisible by 5 or 7.
7. Find the number of integers between 1 and 100 divisible by 2, 3 or 5.
8. Find the number of integers between 1 and 525 divisible by 3, 5 or 7.
9. Calculate φ (n) for the following values of n using Inclusion-Exclusion.
a. 24 b. 100 c. 1000 d. 105
10. Calculate φ (n) for the following values of n using the formula.
a. 48 b. 30 c. 300 d. 210
11. Let p be prime. Evaluate φ

(
pk
)
without using Inclusion-Exclusion.

12. + Fermat's Little Theorem. Let p be prime.
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a. Find the number of ways to color a necklace with p beads using at least two of a colors, assuming the necklace
is �xed.

b. Find the number of ways to color a necklace with p beads using at least two of a colors if the necklace is
allowed to rotate.

c. Prove Fermat's Little Theorem: ap ≡ a (mod p).
13. Evaluate π (24).
14. Evaluate π (120).
15. How many onto functions are there from [4] to [3]?
16. How many onto functions are there from [6] to [4]?
17. Evaluate S (m,n) for all m, n with 1 ≤ n ≤ m ≤ 4.
18. Evaluate S (5, 2).
19. List the derangements of [4].
20. Calculate Dn for 1 ≤ n ≤ 7.
21. + Use a counting argument (not the formula) to prove that Dn+1 = n (Dn +Dn−1).
22. How many permutations of n objects contain exactly one cycle of length one?
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