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The k-core of a graph is the maximal subgraph with minimum degree at least k.

It is easily shown that this subgraph is unique, the cores of a graph are nested, and

that it can be found by iteratively deleting vertices with degree less than k. The

maximum k such that G has a k-core is the maximum core number of G, Ĉ(G), and

if Ĉ(G) = δ(G), we say G is k-monocore. Many common graph classes including

trees and regular graphs are monocore. A deletion sequence is formed by iteratively

deleting a vertex of smallest degree, and a construction sequence reverses a deletion

sequence.

Following these basic results, chapter one de�nes the k-shell of a graph as the

subgraph induced by edges in the k-core and not in the k + 1-core. The 1-shell is a

forest with no trivial components. The structure of 2-cores and 3-cores is analyzed

and an operation characterization of 2-monocore graphs is presented.

Chapter two examines the extremal classes of k-cores. Maximal k-degenerate

graphs are the upper extremal graphs. Results on their size, degree sequence, di-

ameter, and more are presented. Labeled maximal k-degenerate graphs are shown to

correspond bijectively to a certain type of sequences. The k-trees, a special type of

maximal k-degenerate graph, are characterized.

The degree sequences of k-monocore graphs are characterized. Collapsible and

core-critical graphs, classes of lower extremal graphs, are de�ned and analyzed. How

graphs collapse is analyzed.



In Chapter three, the structure of the k-core of a line graph or Cartesian product

or join of graphs is characterized. Ramsey core numbers, a new variation of Ramsey

numbers, are de�ned and an exact formula is proven.

Chapter four considers applications of cores to problems in graph theory. The core

number bound for chromatic number, χ (G) ≤ 1+Ĉ (G), is proved using construction

sequences. It leads to short proofs of Brooks' Theorem and the Nordhaus-Gaddum

Theorem. Extremal decompositions attaining Plesnik's Conjecture for k = 2 and

3 are characterized. Similar coloring techniques are discussed for edge coloring, list

coloring, L (2, 1) coloring, arboricity, vertex arboricity, and point partition numbers.

Applications of cores to problems in planarity, integer embeddings, domination, total

domination, and the Reconstruction Conjecture are discussed.
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1 Introduction

This dissertation will study k-cores of graphs. We will see that cores are a natural and

useful means of simplifying the structure of graphs. They have interesting structure

in their own right, and they are a useful means of attacking many other problems in

graph theory, particularly graph coloring. This section will be devoted to laying out

the basic de�nitions and results needed throughout the sections that follow.

1.1 Basics

De�nition 1. The k-core of a graph G is the maximal induced subgraph H ⊆ G such

that δ(G) ≥ k.

Thus all vertices of H are adjacent to at least k other vertices in H.

The k-core was introduced by Steven B. Seidman in a 1983 paper entitled Network

structure and minimum degree. Note that in that paper, [53] Seidman de�ned the k-

core to also be connected. However, this condition has been omitted in other papers,

and we will �nd it more convenient to omit it here.

We will denote the k-core of graph G by Ck(G).

The de�nition of k-core presumes that it is unique, and hence well-de�ned.

Proposition 2. The k-core is well-de�ned.

Proof. Let H1, H2 both be maximal subgraphs of a graph G with δ(H1) ≥ k, δ(H2) ≥

k. Let H = H1 ∪H2. Then H1 ⊆ H, H2 ⊆ H, and δ(H) ≥ k. Then H = H1 = H2,

so the k-core is unique.

Figure 1 shows the successive cores of a particular graph G.

1



G is its own 0-core.

The 1-core of G.

The 2-core of G.

The 3-core of G is 2K4.

Figure 1: An example of the cores of a graph.
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Here are some basic results on k-cores.

For any graph G, C0(G) = G. Indeed, for all k < 0, Ck(G) = G. Even though

the minimum degree of a graph is never negative, we will �nd it convenient to allow

negative integer cores. The 1-core is the result of deleting all isolated vertices from

G.

Any graph G with δ(G) ≥ k can be a k-core. In particular, it is its own k-core. In

this case, we say G is a k-core.

For a speci�c value of k, G may not have a k-core. In this case, we say its k-core

is null (Ck(G) = Ø) or does not exist. Alternatively, we say G is k-core-free. If not,

we say its k-core exists. For every (�nite) graph, the k-core will be null for a large

enough value of k.

Proposition 3. The cores of a graph are nested. That is, if k > j, then Ck(G) ⊆ Cj(G).

Proof. Let k > j, and v ∈ Ck(G). Then v is an element of a set of vertices that are

each adjacent to at least k (and hence j) elements of the set. Thus δ(Ck(G)) ≥ j, so

Ck(G) ⊆ Cj(G).

The fact that the cores are nested implies that for a given vertex v there exists an

integer N such that v is contained in every k-core for k ≤ N and is contained in no

k-core for k > N .

De�nition 4. The core number of a vertex, C(v), is the largest value for k such that

v ∈ Ck(G). (This has also been named the coreness of v.) The maximum core number

of a graph, Ĉ(G), is the maximum of the core numbers of the vertices of G. Given

k = Ĉ(G), the maximum core of G is Ck(G).

3



It is immediate that δ (G) ≤ Ĉ (G) ≤ 4 (G). We can characterize the extremal

graphs for the upper bound. For simplicity, we restrict the statement to connected

graphs. (see also West p. 199 [60])

Proposition 5. Let G be a connected graph. Then Ĉ (G) = 4 (G)⇐⇒ G is regular.

Proof. If G is regular, then its maximum and minimum degrees are equal, so the result

is obvious.

For the converse, let Ĉ (G) = 4 (G) = k. Then G has a subgraph H with δ (H) =

4 (G) ≥ 4 (H), so H is k-regular. If H were not all of G, then since G is connected,

some vertex of H would have a neighbor not in H, implying that 4 (G) > 4 (H) =

δ (H) = 4 (G). But this is not the case, so G = H, and G is regular.

We could similarly de�ne the minimum core number of G to be the largest k such

that Ck(G) = G. But this is just δ(G).

De�nition 6. If the maximum and minimum core numbers of G are equal, Ĉ(G) =

δ(G), we say G is k-monocore.

Monocore graphs are the extremal graphs for the lower bound δ (G) ≤ Ĉ (G).

We need a way to determine the k-core of a graph. Examining all 2n induced

subgraphs of a graph G of order n is impractical. Fortunately, there is an e�cient

algorithm to determine the k-core of a graph. This algorithm will be presented as a

sketch, and more details will be presented as part of a more general algorithm below.

Algorithm 7. The k-core algorithm (sketch)

Input: graph G with adjacency matrix A, integer k, degree array D
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Recursion: Delete all vertices with degree less than k from G. (That is, make a list
of such vertices, zero out their degrees, and decrement the degrees of their neighbors.)

Result: The vertices that have not been deleted induce the k-core.

The fact that this algorithm works can be said to be the fundamental result on

k-cores.

Theorem 8. Applying the k-core algorithm to graph G yields the k-core of G, provided

it exists.

Proof. Let G be a graph and H be the result of the algorithm.

Let v ∈ H. Then v has at least k neighbors in H. Then δ(H) ≥ k. Then

H ⊆ Ck(G).

Let v ∈ Ck(G). Then v is an element of a set of vertices, each of which has at least

k neighbors in the set. None of these vertices will be deleted in the �rst iteration.

If none have been deleted by the nth iteration, none will be deleted by the n + 1st

iteration. Thus none will ever be deleted. Thus v ∈ H. Thus Ck(G) ⊆ H.

Thus H = Ck(G), so the algorithm yields the k-core.

If G does not have a k-core, the algorithm will delete all the vertices.

This algorithm can be generalized to determine the core structure of a graph G.

Algorithm 9. The Core Number Algorithm

Input adjacency matrix A
Set δ =∞.
For each vertex
Compute its degree by summing its row in A; store in degree array
If d (v) < δ, set δ = d (v)

Set k = δ.
While there is a vertex left to be deleted
For each vertex
If its degree is at most k
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Record its core number in the core number array
Mark it in the delete array, indicate a vertex to be deleted

If there is no vertex to delete, increase k by 1
For each vertex marked in the delete array
Make its degree 0
For each vertex it is adjacent to
If its degree is not 0, reduce it by 1

Clear it from the delete array

The core number algorithm is a polynomial time algorithm.

Theorem 10. The core number algorithm has e�ciency O (n2).

Proof. The row corresponding to a vertex will be run through exactly twice. Once

when its degree is computed, and again when it is 'deleted'. There are n rows and n

columns in the adjacency matrix. The other steps of the algorithm all run in linear

time. Thus the algorithm has e�ciency O (n2).

If we use an edge list instead of an adjacency matrix to describe the graph, it is

possible to use essentially the same algorithm to determine the core numbers in O (m)

time. [5] This is better for sparse graphs.

The core number algorithm successively deletes vertices of relatively small degree

in a graph until none remain. We can de�ne a sequence that orders the vertices of a

graph based on this process.

De�nition 11. A vertex deletion sequence of a graph G is a sequence that contains

each of its vertices exactly once and is formed by successively deleting a vertex of

smallest degree. The graph deletion sequence of G is the corresponding sequence

of subgraphs of G. The degree deletion sequence is the corresponding sequence of

degrees of deleted vertices.
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We may wish to construct a graph by successively adding vertices of relatively

small degree. This motivates our next de�nition.

De�nition 12. The vertex, graph, and degree construction sequences of a graph are

the reversals of the corresponding deletion sequences.

By the k-core algorithm, the maximum value of the degree deletion sequence is

the maximum core number of the graph in question.

De�nition 13. A graph is k-degenerate if its vertices can be successively deleted so

that when deleted, each has degree at most k. The degeneracy of a graph is the

smallest k such that it is k-degenerate.

Thus the k-core algorithm implies a natural min-max relationship.

Corollary 14. For any graph, its maximum core number is equal to its degeneracy.

Proof. Let G be a graph with degeneracy d and k = Ĉ (G). Since G has a k-core,

it is not k − 1-degenerate, so k ≤ d. Since G has no k + 1-core, running the k-core

algorithm for the value k + 1 destroys the graph, so G is k-degenerate, and k = d.

There are at most n! vertex deletion sequences for a labeled graph G of order n.

This is exact if and only if G is complete or empty. The vertex deletion sequence of

a graph is never unique for a nontrivial graph since the next-to-last graph must be

K2. The vertex and graph deletion sequences of a graph determine each other, and

both determine the degree deletion sequence, but the converse is not true. In Figure

2 below, vertex deletion sequences ABCDE and EDABC both give degree deletion

sequence 11110 but are not distinct even unlabeled.

7



Figure 2: Degree deletion sequence does not determine vertex deletion sequence.

Figure 3: A graph need not have a unique degree deletion sequence.

The degree deletion sequence need not be unique. In the Figure 3, starting with A

can produce a degree deletion sequence of 22111210 or 22211110 while starting with

B produces the degree deletion sequence 21211210.

We now determine the cores of some special classes of graphs. First, we have the

following.

Proposition 15. Let G be a graph and Gi be the components of G, so G = ∪Gi. Then

Ck(G) = ∪Ck(Gi).

Proof. Let v ∈ Ck(G). Then v ∈ Gi for some i and v ∈ H ⊆ Gi, δ(H) ≥ k, so

v ∈ Ck(Gi) ⊆ ∪Ck(Gi). Thus Ck(G) ⊆ ∪Ck(Gi).

Let v ∈ ∪Ck(Gi). Then v ∈ Ck(Gi) for some i. Then v ∈ H ⊆ G, δ(H) ≥ k, so

v ∈ Ck(G). Then ∪Ck(Gi) ⊆ Ck(G).
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Class of Graphs Maximum Core Number

r-regular r

nontrivial trees 1

forests (no trivial components) 1

complete bipartite Ka,b, a ≤ b a

Ka1,...,an , a1 ≤ a2 ≤ . . . ≤ an a1 + . . .+ an−1

wheels 3

maximal outerplanar, n ≥ 3 2

Table 1: Classes of monocore graphs.

Hence we consider the least-connected connected graphs, trees.

Proposition 16. Let T be a nontrivial tree. Then Ck(T ) =

 T k = 0, 1

Ø k > 1
.

Proof. Every nontrivial tree has δ(T ) = 1. Suppose there were a counterexample for

k ≥ 2, and let T be one with minimum order n. Now T has an end-vertex v. Now

v /∈ Ck(T ), so T − v is a tree with order n − 1, and Ck(T − v) ⊆ Ck(T ), which is a

contradiction. Thus Ck(T ) = Ø for k ≥ 2.

Thus all trees are monocore. Indeed, many important classes of graphs are mono-

core. Table 1 summarizes some of the most common. The veri�cation of their core

structure is straightforward.

One class of graphs that are usually not monocore is the unicyclic graphs.
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Proposition 17. Let T be a tree with order n ≥ 3, e = uv an edge not in T . Then

T + e is unicyclic with cycle H induced by e and the unique u− v path in T . Then

Ck (T + e) =


T + e k = 0, 1

H k = 2

Ø k > 2

.

Indeed, adding any two edges to a tree produces a 2-core induced by the edges

and the unique paths in the tree between each pair of vertices that de�ne the edges.

Adding three edges may produce a 3-core.

For more general classes of graphs, we may only be able to bound the maximum

core number.

Proposition 18. If G is planar, Ĉ(G) ≤ 5. If G also has order n < 12, then Ĉ(G) ≤ 4.

Proof. If there were a planar 6-core, it would have 2m =
∑
d (vi) ≥ 6n, that is,

m ≥ 3n. But every planar graph has m ≤ 3n− 6.

Let planar graph G have a 5-core H, where H has order n, size m. Then 2m =∑
d (vi) ≥ 5n, so m ≥ 5

2
n. Since H is planar, m ≤ 3n − 6. Thus 5

2
n ≤ 3n − 6, so

n (G) ≥ n (H) ≥ 12.

This bound is sharp. Indeed, the unique planar graph of order 12 with maximum

core number 5 is the icosahedron. On the other hand, even if we restrict ourselves to

maximal planar graphs, we cannot guarantee a minimum degree greater than three.

This dissertation will follow the notation primarily of the following books.

Graphs and Digraphs, 4th edition by Chartrand and Lesniak [15]
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The overlap of K4 and C4 on a vertex, K4 ∪
v
C4.

Figure 4: The overlap of two graphs.

Introduction to Graph Theory, 2nd edition by Douglas West [60]

Unde�ned terminology can be found in those books. In addition, we will use the

following graph operation called the overlap of two graphs.

We say an identi�cation of two ordered sets of equal cardinality (a1, . . . , ar) and

(b1, . . . , br) is the pairwise equation of equal-indexed elements a1 = b1, ..., ar = br.

De�nition 19. Let G1, G2 be graphs with H1 ⊆ V (G1), H2 ⊆ V (G2) ordered sets of

equal cardinality. The overlap of G1 and G2,

G1 ∪
H1=H2

G2

with identi�cation H1 = H2 has vertex set V (G1) ∪
H1=H2

V (G2) and edge set

E (G1) ∪
H1=H2

E (G2).

When H1 and H2 each induce graph F , we write G1 ∪
F
G2. When F = K1 = {v}, we

write G1 ∪
v
G2. When F = K2 = 〈e〉, we write G1 ∪

e
G2.

It is easily seen that the overlap operation is associative and commutative. Any

decomposition of a graph G into subgraphs G1, ..., Gn can be expressed as an overlap

of these subgraphs with each pair of identi�ed subgraphs edge-disjoint.

11



1.2 k-Shells

We have seen that the cores of a graph are nested. This in turn can be used to de�ne

a decomposition of a graph into subgraphs de�ned based on those parts of the graph

contained in one core and not in the next higher number core.

De�nition 20. For k > 0, the k-shell of a graph G, Sk (G), is the subgraph of G

induced by the edges contained in the k-core and not contained in the k+ 1-core. For

k = 0, the 0-shell of G is the vertices of the 0-core not contained in the 1-core.

Thus the 0-shell is simply the set of isolated vertices of G. If M = Ĉ (G), the

M -shell of G is just the maximum core of G. The k-shells of G form a decomposition

of G, indeed they were de�ned to do so.

If G has no k-shell, we say G is k-shell-free. G is k-shell-free exactly when its

k-core equals its k + 1-core. This includes when it is k-core-free.

Unless each k-shell is a separate component or components of G, the shells of G

will have some vertices in common.

De�nition 21. The k-boundary of G, Bk (G), is the set of vertices contained in both

the k-shell and the k + 1-core.

Thus a vertex is contained in the k-boundary exactly when it is contained in the

k + 1-core and adjacent to a vertex in the k-core.

Sometimes it is convenient to exclude the boundary when considering the shell.

De�nition 22. The proper k-shell of G, S ′k (G), is the subgraph of G induced by the

non-boundary vertices of the k-shell. The order of the k-shell of G is de�ned to be

the order of the proper k-shell.
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A graph G.

The 2-shell of G.

The proper 2-shell of G.

Figure 5: The 2-shell and proper 2-shell of G.

Thus the vertices of the proper k-shells partition the vertex set of G. A vertex

has core number k if and only if it is contained in the proper k-shell of G. Thus the

proper k-shell is induced by the vertices with core number k.

Figure 5 shows a graph G and its 2-shell and proper 2-shell.

Note that the proper k-shell was called the k-remainder of G by Seidman [53] in

the 1983 paper that introduced k-cores. That term does not appear to have been

used since.

We would like to know which graphs can be k-shells.
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Theorem 23. A graph F with vertex subset B can be a k-shell of a graph with bound-

ary set B if and only if no component of F has vertices entirely in B, δ (B) ≥ 1,

δF (V (F )−B) = k, and F contains no subgraph H with δH (V (H)−B) ≥ k + 1.

Proof. (⇒) Let F be a k-shell of graph G with boundary set B. If any component of

F had all vertices in B, it would be contained in the k+ 1-core of G. F is induced by

edges, so δ (B) ≥ 1. If a vertex v in F and not in B had d (v) < k, it would not be in

the k-core of G. If F had such a subgraph H, it would be contained in the k+ 1-core

of G.

(⇐) Let F be a graph satisfying these conditions. Overlap each vertex in B with

a distinct vertex of a k+ 1-core G with su�ciently large order. Then F is the k-shell

of the resulting graph.

The 1-shell of a graph can be characterized in terms of a familiar class of graphs.

Corollary 24. The 1-shell of G, if it exists, is a forest with no trivial components and

at most one boundary vertex per component.

Proof. F is acyclic, δ (F ) = 1, and two boundary vertices in a tree are connected by a

path, which would be in the 2-core.

We can also characterize graphs that can be proper k-shells. Certainly such a

graph cannot contain a k+ 1-core. This obvious necessary condition is also su�cient.

Theorem 25. A graph F can be a proper k-shell if and only if F does not contain a

k + 1-core.
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Proof. The forward direction is obvious.

Let F be a graph that does not contain a k + 1-core. Let M be a k + 1-core. For

each vertex v in F , let a (v) = max {k − d (v) , 0}. For each vertex v, take a (v) copies

of M and link each to v by an edge between v and a vertex in M . The resulting

graph G has F as its proper k-shell.

The construction used in this proof is by no means unique.

Corollary 26. A graph F can be a proper 1-shell if and only if F is a forest.

We can determine sharp bounds for the size of a k-shell.

Proposition 27. The size m of a k-shell with order n satis�es
⌈
k·n
2

⌉
≤ m ≤ k · n.

Proof. The non-boundary vertices of the k-shell of G can be successively deleted so

that when deleted, they have degree at most k. Thus m ≤ k · n.

The non-boundary vertices have degree at least k, so there are at least k·n
2

edges.

The lower bound is sharp for all k. For k or n even, the extremal graphs have

every component k-regular, and no vertices adjacent to the k + 1-core, if it exists.

For k and n both odd, the extremal graphs have a single component with one vertex

of degree k + 1 and all others of degree k, and no vertices adjacent to the k + 1-core,

if it exists.

The upper bound is sharp for all k < Ĉ (G). The extremal graphs have vertices

having degree exactly k when deleted, so they can be constructed by reversing this

process. Thus they must have at least k boundary vertices. For k = Ĉ (G), we will

see in Theorem 58 that the maximum core can have size at most k · n−
(
k+1

2

)
, since
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deleting the vertices eventually restricts the number of available neighbors. Thus we

have the following corollary.

Corollary 28. Let sk be the order of the k-shell of G, 0 ≤ k ≤ r = Ĉ (G). Then the

size m of G satis�es

r∑
k=1

⌈
k · sk

2

⌉
≤ m ≤

r∑
k=1

k · sk −
(
k + 1

2

)
.

Proof. Sum the lower and upper bounds over all k. The 0-shell must have size 0, and

the maximum core has the previously stated upper bound. The result follows.

Both upper and lower bounds are sharp. The extremal graphs have each k-shell

extremal, as above.

The bound on the size of a k-shell can be improved by considering the number of

boundary vertices.

Proposition 29. The size m of a k-shell with order n and b boundary vertices satis�es

⌈
k · n+ b

2

⌉
≤ m ≤ k · n−

(
k − b+ 1

2

)
.

Proof. When deleted, the ith to last vertex can have degree at most b + i − 1. Thus

the upper bound must be reduced by
∑k−b

i=1 i = (k−b)(k−b+1)
2

=
(
k−b+1

2

)
. The boundary

vertices each contribute degree at least one to the lower bound. The result follows.

The lower bound is sharp for all k. If k ·n+ b is even, then every component of the

extremal graphs connected to the k+1-shell can be formed in the following way. Start
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with a connected k-regular graph with an edge cut of bi edges. Take the half of the

graph on one side of the edge cut and add edges joining the vertices adjacent to the

cut to bi boundary vertices. Add enough components so that the number of boundary

vertices and non-boundary vertices sum to the appropriate values. If k · n+ b is odd,

the construction is similar, but there must be one vertex with degree k + 1.

The upper bound is sharp for all k, and the extremal graphs are graphs whose

vertices have the maximum possible degree for deletion at each step.

Corollary 30. Let sk be the order of the k-shell of G and bk be the order of the k-

boundary of G, 0 ≤ k ≤ r = Ĉ (G). Then the size m of G satis�es

r∑
k=1

⌈
k · sk + bk

2

⌉
≤ m ≤

r∑
k=1

(
k · sk −

(
k − bk + 1

2

))
.

Proof. This is similar to the previous corollary.

Note that the maximum core must have no boundary vertices.
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1.3 The Structure of k-Cores

We would like to understand the structure of k-cores. We have already seen several

structural results. The k-core of G is the union of the k-cores of the components of

G. In particular, if G is a k-core, then every component of G is also a k-core. Hence

we can naturally restrict our attention to connected graphs.

Each component of Ck(G) has order at least k + 1, and any order p ≥ k + 1 can

be achieved. For example, G = Kp is a k-core. The unique k-core of order k + 1 is

Kk+1.

We now consider the relationship between subgraphs and k-cores.

Proposition 31. If H ⊆ G, then Ck (H) ⊆ Ck (G). This is an equality exactly when

the k-core of G is contained in H.

This follows immediately from the de�nition of k-core.

Corollary 32. Let G and H be graphs which may overlap. Then

Ck (G ∩H) ⊆ Ck (G) ∩ Ck (H)

Ck (G ∪H) ⊇ Ck (G) ∪ Ck (H) .

We would like to characterize the structure of k-cores. We have already seen that

G is its own 0-core. The 1-core of G is formed by deleting any isolated vertices of G.

1.3.1 2-Cores

The structure of the 2-core of a graph is less trivial. The following result was observed
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by Seidman [53].

Proposition 33. If G is connected, then its 2-core is connected.

Proof. Let G be connected, and u, v ∈ C2 (G). Then there is a u− v path in G. The

vertices on the path all have degree at least two, and all are adjacent to at least two

vertices in a set with minimum degree two, since u and v are in the 2-core of G. Thus

the u− v path is in the 2-core of G, so it is connected.

The corresponding results are trivial for the 0-core and 1-core. They are false for

k ≥ 3. For example, joining two vertices of two k + 1-cliques by a path of length at

least two yields a connected graph with a disconnected k-core for k ≥ 3.

One way to characterize 2-cores is with a local characterization. That is, describing

the structure of G 'near' an arbitrary vertex v.

Theorem 34. A vertex v of G is contained in the 2-core of G if and only if v is on a

cycle or v is on a path between vertices of distinct cycles.

Proof. (⇐) Let v be on a cycle or a path between vertices of distinct cycles. Both

such graphs are themselves 2-cores, so v is in the 2-core of G.

(⇒) Let v be in the 2-core of G. If v is on a cycle, we are done. If not, then

consider a longest path P in the 2-core through v. All the edges incident with v must

be bridges, so v is in the interior of P . An end-vertex u of P must have another

neighbor, which cannot be a new vertex, so it must be on P . If its neighbor were on

the opposite side of v, then v would be on a cycle. Thus its neighbor must be between

u and v on P . Repeating this argument for the other end of P shows that v is on a

path between vertices on cycles. (See Figure 6.)

19



Figure 6: Vertex v is on a path between cycles.

This characterization does not extend easily to higher values of k. The key to the

local characterization for the 2-core is the fact that every 2-core contains a simple

subgraph that is itself a 2-core. But as we shall see later on, there are arbitrarily

large k-cores that do not contain any proper subgraph which is a k-core for k ≥ 3.

It is also possible to o�er a more global characterization of the structure of 2-cores.

Corollary 35. A graph G is a 2-core ⇐⇒ every end-block of G is 2-connected.

Proof. If every end-block of G is 2-connected, then every vertex of G is either on a

cycle or a path between cycles. Thus G is a 2-core. If some end-block of G is not

2-connected, then it is K2, so G has a vertex of degree one and is not a 2-core.

This leads to another corollary.

De�nition 36. A block-tree decomposition of a 2-core G is a decomposition of G into

2-connected blocks and trees so that if T is nontrivial, each end-vertex of T is shared

with a distinct 2-connected block, if T is trivial, it is a cut-vertex of at least two

2-connected blocks, and there are no two disjoint paths between two distinct blocks.

Corollary 37. Every 2-core has a unique block-tree decomposition.
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Proof. Let F be the subgraph of a 2-core G induced by the bridges and cut-vertices of

G. Then F is acyclic, so it is a forest. Break each component of F into branches at

any vertex contained in a component of G−F . Also break G−F into blocks, which

must be 2-connected. By the previous corollary, each end-vertex of each of the trees

must overlap a 2-connected block. If any block contained two end-vertices of the same

tree, then there would be a cycle containing edges from the tree. If there were two

disjoint paths between two blocks, they would not be distinct. This decomposition is

unique because the block decomposition of a graph is unique and any blocks that are

K2 and on a path between 2-connected blocks that does not go through any other

2-connected blocks must be in the same tree.

These corollaries provide no help when the 2-core in question is itself 2-connected.

But there is a well-established description of the structure of 2-connected graphs. An

ear of G is a maximal path of G whose internal vertices have degree two. An ear

decomposition of G is a decomposition of G into ears and one cycle.

Theorem 38. [Whitney, see West p. 163] [60] A graph is 2-connected ⇐⇒ it has an

ear decomposition. Every cycle is the cycle in some ear decomposition.

There is also a description of the structure of minimally 2-connected graphs.

Theorem 39. [Bollobas p. 15] [7] Let G be a minimally 2-connected graph that is not

a cycle. Let D ⊂ V (G) be the set of vertices of degree two. Then F = G − D is a

forest with at least two components. Each component P of G [D] is a path and the

end-vertices of P are not joined to the same tree of the forest F .

Corollary 40. A graph G which is not a cycle is minimally 2-connected ⇐⇒ it has an

21



ear decomposition with each path of length at least 2, no ear joined to vertices in a

single component of F , and no ear connects or creates a cycle in F .

Proof. (⇒) Let G be minimally 2-connected. Then G has an ear decomposition. A

path of length one in the ear decomposition would be an essential edge. So would

an edge between vertices in a component of F that are the ends of an ear. The �nal

condition is implied by the second theorem.

(⇐) Assume the hypothesis. The ear decomposition implies that G is 2-connected.

Adding the �rst ear makes F disconnected, and adding subsequent ears keep it a

forest. The ears must connect di�erent components of F . By the previous theorem,

G is minimal.

We can state an operation characterization of 2-cores. An operation character-

ization is a rule or rules that can be used to construct all graphs in some class of

graphs.

Theorem 41. A graph G is a connected 2-core ⇐⇒ it is contained in the set S whose

members can be constructed by the following rules.

1. All cycles are in S.

2. Given one or two graphs in S, the result of joining the ends of a (possibly

trivial) path to it or them is in S.

Proof. (⇐) A cycle has minimum degree 2, and applying step 2 does not create any

vertices of lower degree, so a graph in S is a 2-core.

(⇒) This is clearly true if G has order 3. Assume the result holds for orders up to

r, and let G have order r + 1. Let P be an ear or cut-vertex of G. Making P = K2

is only necessary when G has minimum degree at least 3 and is 2-connected. In this

case, edges can be deleted until one of these conditions fails to hold. Then if P has

22



internal vertices, deleting them results in a component or components with order at

most r. The same is true if P is a cut-vertex, and G is split into blocks. Then the

result follows by induction.

We can also describe 2-monocore graphs by an operation characterization.

Theorem 42. The set of connected 2-monocore graphs is equivalent to the set S of

graphs that can be constructed using the following rules.

1. All cycles are in S.

2. Given one or two graphs in S, the graph H formed by identifying the ends of a

path of length at least two with vertices of the graph or graphs is in S.

3. Given a graph G in S, form H by taking a cycle and either identifying a vertex

of the cycle with a vertex of G or adding an edge between one vertex in each.

Proof. (⇐) We �rst show that if G is in S, then G is 2-monocore. Certainly cycles are

2-monocore. Let H be formed from G in S by applying rule 2. Then H has minimum

degree 2 and since G is 3-core-free and internal vertices of the path have degree 2, H

is also 3-core-free. Thus H is 2-monocore. The same argument works for adding a

path between two graphs. Let H be formed from G in S by applying rule 3. Then H

has minimum degree 2 and since G is 3-core-free and all but one vertex of the cycle

have degree 2, H is also 3-core-free. Thus H is 2-monocore.

(⇒) We now show that if G is 2-monocore, it is in S. This clearly holds for all

cycles, including C3, so assume it holds for all 2-monocore graphs of order up to r.

Let G be 2-monocore of order r+ 1 and not a cycle. Then G has minimum degree 2,

so it has a vertex v of degree 2. Then v is contained in P , an ear of length at least 2,

or C, a cycle which has all but one vertex of degree 2.

Case 1. G has an ear P . If G− P is disconnected, then the components of G are

2-monocore, and hence in S. Then G can be formed from them using rule 2, so G is
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in S. If G − P is connected, then it is 2-monocore, and hence in S. Then G can be

formed from G− P using rule 2, so G is in S.

Case 2. We may assume that G has no such ear P . Then G has a cycle C with all

but one vertex of degree 2, and one vertex u of degree more than 2. If u has degree

at least 4 in G, then let H be formed by deleting all the vertices of C except u. Then

H is 2-monocore, and G can be formed from it using rule 3. If d (u) = 3, then its

neighbor not in the cycle has degree at least three, so G − C is 2-monocore, and G

can be formed from it by using rule 3.

Many 2-monocore graphs have a nice decomposition.

Corollary 43. Every 2-monocore graph for which the latter operation in rule 3 is not

needed for its construction can be decomposed into induced cycles and paths of length

at least 2 which are induced except possibly for an edge joining end-vertices.

Proof. The construction yields a decomposition into cycles and paths. It is not possible

to add a chord to a cycle or join the two vertices on a path.

The converse to this corollary does not hold, since, for example, K1,4 and W4 can

both be decomposed into such paths and cycles, but neither is 2-monocore.

We can similarly describe the structure of 2-shells.

Corollary 44. The set of 2-shells is equivalent to the set S ′ of graphs constructed using

the following rules.

1. All graphs in set S from Theorem 42 and all 3-cores are in S ′.

2. Given one or two graphs in S ′, the graph H formed by identifying the ends of

a path of length at least two with vertices of the graph or graphs is in S ′.
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Case 1.

Cases 2 and 3.

Figure 7: The cases of Theorem 45.

3. Given a graph G in S ′, form H by taking a cycle and either identifying a vertex

of the cycle with a vertex of G or adding an edge between one vertex in each.

Finally, delete the 3-cores (keeping boundary vertices) last.

The proof is essentially the same as that of the previous theorem.

1.3.2 3-Cores

Describing the structure of 3-cores is more di�cult, but we do have the following

theorem, which has been observed by Dirac (see [West p. 218] [60]). A minor of

a graph is a graph that can be formed by contracting edges and deleting edges or

vertices.

Theorem 45. Every 3-core has K4 as a minor.

Proof. The 3-core of smallest order is K4, for which the theorem certainly holds. As-

sume the theorem holds for all 3-cores of order between 4 and r, and let G be a 3-core
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of order r + 1. Further, every 3-core contains a subgraph which has no edge join

vertices of degree more than 3, so let this be true of G as well.

Case 1. G has an edge e = uv so that u and v have no common neighbors. In this

case, contracting e yields a vertex of degree at least 4, so G/e is a 3-core. (See Figure

7.)

Case 2. Vertices u and v have two common neighbors x and y. If G has an x− y

path not through u or v, it has K4 as a minor. If not, then if one of x or y has degree

at least 4 then contract {u, v, x, y} to a single vertex. Otherwise, let z be the other

neighbor of x, and contract {u, v, x, y, z} to a single vertex. The result is a 3-core.

Case 3. Vertices u and v have exactly one common neighbor x, and no pair of

vertices has more than one common neighbor. Then vertices u, v, x, have at least

three distinct neighbors and no common neighbors. Contracting {u, v, x} to a single

vertex results in a 3-core.

Thus G has a minor with smaller order which is a 3-core, so by induction it has

K4 as a minor.

This theorem cannot be extended to larger values of k. For the octahedron, K2,2,2,

is a 4-core but it does not have K5 as a minor, since contracting any edge yields

K5 − e. It is not clear whether there is a larger �nite set of minors such that any

4-core must contain at least one of them.

However, it can be extended as follows. The proof of the following theorem follows

that for Wagner's Theorem, which states that a graph is planar if and only if it does

not contain a K5 or K3,3 minor.

Theorem 46. Let H be a graph with 4 (H) ≤ 3. Then G has H as a minor ⇐⇒ G

has a subdivision of H.

Proof. Certainly if G has a subdivision of a graph, it has that graph as a minor, since
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the subdivided edges can be contracted. Suppose G has H as a minor. Then G

contains sets of vertices Si which contract to the vertices vi of H. Thus G [Si] is

connected, and there is an edge between vertices in Si and Sj if there is an edge vivj

in H.

If d (vi) = 1, there is nothing to prove. If d (vi) = 2, then Si has two vertices x

and y, possibly the same, on edges to other sets S. Since G [Si] is connected, there

is an x − y path in it (possibly trivial), so pick x to stand for vi in H. If d (vi) = 3,

then Si has three vertices x, y and z, not necessarily distinct, on edges to other sets

S. Since G [Si] is connected, there is an x − y path in it, and a path between z and

some vertex u on the �rst path. De�ne u to be vi in H.

Thus G has a subdivision of H.

This cannot be extended to maximum degree 4. For example, the Petersen graph

has K5 as a minor, which can be formed by contracting any perfect matching, but it

has no K5 subdivision. If G has a minor H with a vertex of degree 4, there are two

distinct trees (up to subdivision) in G that could produce it.

Corollary 47. Every 3-core contains a subdivision of K4.

This can be pushed a bit further.

Corollary 48. Every end-block of a 3-core contains a subdivision of K4.

Proof. A subdivision of K4 cannot contain a cut-vertex, so it must be contained in

some block of a 3-core. Form a graph with two copies of an end-block of a 3-core by

identifying their unique cut-vertices. The graph that results is a 3-core, so it has a

subdivision of K4 in a block.
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1.3.3 Parameters of k-Cores

Graphs with minimum degree at least k have been studied in relation to a variety of

graphical properties. Some of these results are of interest.

The connectivity of a k-core can be related to its order.

Proposition 49. [Chartrand/Lesniak p. 72] [15] Let G be a k-core of order n and

1 ≤ l ≤ n− 1. If k ≥
⌈
n+l−2

2

⌉
, then G is l-connected.

Proof. Assume the hypothesis. Then the sum of the degrees of any two nonadjacent

vertices of G is at least n+ l− 2, so they have at least l common neighbors. Thus G

is l-connected.

The result's hypothesis is equivalent to n ≤ 2k − l + 2.

Corollary 50. Let G be a k-core with order n. If k+1 < n < 2k+2, then diam (H) = 2.

Proof. Assume the hypothesis. Since k < n − 1, G is not complete, so its diameter

is at least 2. By the previous result, any pair of nonadjacent vertices has a common

neighbor since n ≤ 2k − 1 + 2. Thus diam (G) = 2.

We can also examine when a k-core contains a clique. The following theorem

is closely related to Turan's theorem, which characterizes the extremal graph of a

certain order that does not contain a clique of some size.

Theorem 51. [Chartrand/Lesniak page 294] [15] Let n ≥ r ≥ 2. Then every graph of

order n and size at least
⌊(

r−2
2r−2

)
n2
⌋

+ 1 contains Kr as a subgraph.
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Corollary 52. [Seidman 1983] [53] A k-core with order n must contain a clique Kr as

a subgraph if n <
(
r−1
r−2

)
k.

Proof. Let H be a k-core with order n <
(
r−1
r−2

)
k. Then k >

(
r−2
r−1

)
n, so H has size m

with

m ≥ n · k
2

>

(
r − 2

2r − 2

)
n2 ≥

⌊(
r − 2

2r − 2

)
n2

⌋
.

Thus m ≥
⌊(

r−2
2r−2

)
n2
⌋

+ 1, so by the previous theorem, H contains Kr as a

subgraph.

It is easy to show algebraically that the bound in the previous theorem is equivalent

to r < k
n−k + 2.

In the original paper of k-cores, Seidman's [53] most di�cult result is this theorem

relating diameters and connectivity of k-cores.

Theorem 53. Let H be a connected k-core with order n ≥ 2k + 2 and connectivity l,

then

diam (H) ≤ 3

⌊
p− 2k − 2

β

⌋
+ b (n, k, l) + 3

where β = max {k + 1, 3l} and r is the element of {0, . . . , β − 1} such that r ≡

n− 2k − 2 (modβ) and

b (n, k, l) =


0 0 ≤ r < l

1 l ≤ r < 2l

2 2l ≤ r

.

This has the following corollary for when the connectivity is unknown.
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Figure 8: A 3-core with order 14 and diameter 8.

Corollary 54. [Moon 1965] [45] If H has order n ≥ 2k + 2, then

diam (H) ≤ 3

⌊
n

k + 1

⌋
+ a (p, k)− 3,

where

a (p, k) =


0 p ≡ 0 (mod k + 1)

1 p ≡ 1 (mod k + 1)

2 else

.

This is bound is essentially the best possible. The graphs that achieve the bound

can be described as follows. They have an odd number of blocks arranged to form a

path. Alternating blocks forming the smaller partite set of the path are bridges. The

other internal blocks are Kk+1 − e, where e = uv and u, v are the cut-vertices of G.

The two end-blocks are Kk+2 −
⌊
k+2

2

⌋
K2. (See Figure 8.)

It is possible to describe the subtrees contained in a k-core.

Theorem 55. [West p. 70] [60] All trees of size k are contained as a subgraphs in any

k-core.

The proof of this result follows by an easy induction argument.
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2 Extremal Graph Classes

2.1 Maximal k-Degenerate Graphs

Recall that a k-core-free graph is a graph that contains no k-core. This section will

study the properties of such graphs. In particular, we will study graphs that are

maximal k-core-free.

De�nition 56. A maximal k-core-free graph G is a graph that is k-core-free and is

maximal with respect to this property. That is, no more edges can be added to G

without creating a k-core.

Recall that a graph is k-degenerate if its vertices can be successively deleted so

that when deleted, each has degree at most k, and the degeneracy of a graph G is

the smallest k such that G is k-degenerate. We have seen that the degeneracy of G

is equivalent to the maximum core number of G. By the k-core algorithm, we have

the following.

Corollary 57. A graph G is k-degenerate if and only if G is k + 1-core-free. Maximal

k-degenerate graphs are equivalent to maximal k + 1-core-free graphs.

The term k-degenerate was introduced in 1970 by Lick and White [38]; the concept

has been introduced under other names both before and since. We will prefer the term

k-degenerate since it is reasonably standard and helps to simplify formulas, while also

using k-core-free when convenient.

2.1.1 Basic Properties

Our examination of k-degenerate graphs will focus on maximal k-degenerate graphs.
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Figure 9: A maximal 3-degenerate graph, which can be seen by successively deleting
1, 2, and 3.

Most of the properties given can be generalized with appropriate modi�cation to all

k-degenerate graphs. Our �rst result is the size of a maximal k-degenerate graph.

Theorem 58. The size of a maximal k-degenerate with order n is k · n−
(
k+1

2

)
.

Proof. If G is k-degenerate, then its vertices can be successively deleted so that when

deleted they have degree at most k. Since G is maximal, the degrees of the deleted

vertices will be exactly k until the number of vertices remaining is at most k. After

that, the n− jth vertex deleted will have degree j. Thus the size m of G is

m =
k−1∑
i=0

i+
n−1∑
i=k

k =
k (k − 1)

2
+ k (n− k) = k ·n+

k (k − 1)

2
− 2k2

2
= k ·n−

(
k + 1

2

)

Thus for k-core-free graphs, maximal and maximum are equivalent.

Corollary 59. Every graph with order n, size m ≥ (k − 1)n−
(
k
2

)
+ 1, 1 ≤ k ≤ n− 1,

has a k-core.
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The basic properties of maximal k-core-free graphs were established by Lick and

White [38] and Mitchem [1977] [43].

Theorem 60. Let G be a maximal k-degenerate graph of order n, 1 ≤ k ≤ n−1. Then

a. G contains a k+1-clique and for n ≥ k+2, G contains Kk+2−e as a subgraph.

b. For n ≥ k + 2, G has δ(G) = k, and no two vertices of degree k are adjacent.

c. G has connectivity κ (G) = k.

d. Given r, 1 ≤ r ≤ n, G contains a maximal k-degenerate graph of order r as an

induced subgraph. For n ≥ k+ 2, if d (v) = k, then G is maximal k-degenerate if and

only if G− v is maximal k-degenerate.

e. G is maximal 1-degenerate if and only if G is a tree.

In fact, maximal k-degenerate graphs are one type of generalization of trees.

Several corollaries follow immediately from these basic results. A trivial edge cut

is an edge cut such that all the edges are incident with one vertex.

Corollary 61. Let G be a maximal k-degenerate graph of order n, 1 ≤ k ≤ n−1. Then

a. For k ≥ 2, the number of nonisomorphic maximal k-degenerate graphs of order

k + 3 is 3.

b. G is k-monocore.

c. G has edge-connectivity κ′ (G) = k, and for k ≥ 2, an edge set is a minimum

edge cut if and only if it is a trivial edge cut.

d. The number of maximal k-degenerate subgraphs of order n − 1 is equal to the

number of vertices of degree k in G that are in distinct automorphism classes.

Proof. a. Kk+2 − e is the unique maximal k-degenerate graph of order k + 2. It has

two automorphism classes of vertices, one with two, one with k. Thus there are three

possibilities for order k + 3.
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b. G has minimum degree k, and is k + 1-core-free.

c. First, k = κ (G) ≤ κ′ (G) ≤ δ (G) = k. Certainly the edges incident with a

vertex of minimum degree form a minimum edge cut. The result holds for Kk+1.

Assume the result holds for all maximal k-core-free graphs of order r, and let G have

order r + 1, v ∈ G, d (v) = k, H = G − v. Let F be a minimum edge cut of G. If

F ⊂ E (H), the result holds. If F is a trivial edge cut for v, the result holds. If F

contained edges both from H and incident with v, it would not disconnect H and

would not disconnect v from H.

d. Deleting any minimum degree vertex yields such a subgraph, and deleting any

other vertex destroys maximality. The subgraphs will be distinct unless two minimum

degree vertices are in the same automorphism class.

2.1.2 Degree Sequences

We can characterize the degree sequences of maximal k-degenerate graphs. A

di�erent and somewhat inelegant characterization with a longer proof was o�ered by

Borowieki, Ivanco, Mihok, and Semanisin [1995] [10].

Lemma 62. Let G be maximal k-degenerate with order n and nonincreasing degree

sequence d1, . . . , dn. Then di ≤ k + n− i.

Proof. Assume to the contrary that di > k + n − i for some i. Let H be the graph

formed by deleting the n− i vertices of smallest degree. Then δ (H) > k, so G has a

k + 1-core.

Lemma 63. Let G be maximal k-degenerate with degree sequence d1 ≥ . . . ≥ dn =

k. Then G has at most k + 1 vertices whose degrees are equal to the upper bound

min {n− 1, k + n− i}, one of which is vn, and has exactly k+ 1 such vertices if and
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only if vn has the other k as its neighborhood.

Proof. If G had more than k + 1 such vertices, then H = G− vn would have a vertex

with degree more than than the maximum possible. If G has exactly k + 1, then all

but vn must have degree reduced by exactly one in H when vn is deleted.

Theorem 64. A nonincreasing sequence of integers d1, . . . , dn is the degree sequence

of a maximal k-degenerate graph G if and only if k ≤ di ≤ min {n− 1, k + n− i}

and
∑
di = 2

[
k · n−

(
k+1

2

)]
for 0 ≤ k ≤ n− 1.

Proof. Let d1, . . . , dn be such a sequence.

(⇒) Certainly4(G) ≤ n−1. The other three conditions have already been shown.

(⇐) For n = k+1, the result holds for G = Kk+1. Assume the result holds for order

r. Let d1, . . . , dr+1 be a nonincreasing sequence that satis�es the given properties. Let

d′1, . . . , d
′
r be the sequence formed by deleting dr+1 and decreasing k other numbers

greater than k by one, including any that achieve the maximum. (There are at most k

by the preceding lemma.) Then the new sequence satis�es all the hypotheses and has

length r, so it is the degree sequence for some maximal k-degenerate graph H. Add

vertex vr+1 to H, making it adjacent to the vertices with degrees that were decreased

for the new sequence. Then the resulting graph G has the original degree sequence

and is maximal k-degenerate.

The numbers of vertices of di�erent degrees are related.

Proposition 65. Let G be maximal k-degenerate with 4(G) = r, n ≥ k+ 1, and ni the

number of vertices of degree i, k ≤ i ≤ r. Then

k·nk+(k − 1)nk+1+. . .+2n2k−2+n2k−1 = n2k+1+2n2k+2+. . .+(r − 2k)nr+k (k + 1) .
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Proof. Assume the hypothesis, and let G have order n, size m. Then
∑r

i=1 ni = n and

r∑
i=k

i · ni = 2m = 2

[
k · n−

(
k + 1

2

)]
= (2k)

r∑
i=k

ni − k (k + 1) .

Thus
r∑
i=k

(i− 2k)ni + k (k + 1) = 0.

Corollary 66. If T is a tree,

n1 = n3 + 2n4 + 3n5 + . . .+ (r − 2)nr + 2.

For k = 2,

2n2 + n3 = n5 + 2n6 + 3n7 + . . .+ (r − 4)nr + 6.

We can bound the maximum degree of a maximal k-degenerate graph. Intuitively,

since there are approximately k ·n edges in G, its maximum degree should be at least

2k, provided that G has order large enough to overcome the constant
(
k+1

2

)
subtracted

from the size.

The following result was �rst proven by Filakova, Mihok, and Semanisin [1997]

[25] using contradiction. We present a direct proof.

Theorem 67. If G is maximal k-degenerate with n ≥
(
k+2

2

)
, then 4(G) ≥ 2k.

Proof. Certainly the maximum degree of a graph must be at least as large as the

average of any of the degrees. By Lemma 62, the ith smallest degree is at most

k + n− i. We want the average of the largest n− k degrees to be larger than 2k− 1.

In that case,
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1

n− k

[
2

(
k · n−

(
k + 1

2

))
−

2k−1∑
i=k

i

]
> 2k − 1

1

n− k

[(
2nk − k2 − k

)
−
(

1

2
(2k − 1) (2k)− 1

2
k (k − 1)

)]
> 2k − 1

2
(
2nk − k2 − k

)
−
(
4k2 − 2k

)
+
(
k2 − k

)
> 2 (2k − 1) (n− k)

4nk − 2k2 − 2k − 4k2 + 2k + k2 − k > 4nk − 4k2 − 2n+ 2k

2n > k2 + 3k

Thus n ≥
(
k+2

2

)
. In each step, the logical implication in reversible, so the result

follows from this condition.

This result is the best possible in two senses. First, no larger lower bound for

the minimum degree can be guaranteed, regardless how large the order is. Second,

the hypothesis on n is the smallest that guarantees the result. This can be seen by

constructing a maximal k-degenerate graph so that when added, each new vertex is

made adjacent to the k vertices of smallest degree.

2.1.3 Further Structural Results

We can bound the diameter of a maximal k-degenerate graph.

Theorem 68. A maximal k-degenerate graph G with n ≥ k + 2 has 2 ≤ diam (G) ≤
n−2
k

+ 1.

If the upper bound is an equality, then G has exactly two vertices of degree k and

every diameter path has them as its endpoints.

37



Figure 10: A maximal 3-degenerate graph with diameter 4 and order 11.

Proof. Let G be maximal k-degenerate with r = diam (G). For n ≥ k + 2, G is not

complete, so diam (G) ≥ 2. Now G contains u, v with d (u, v) = r. Now G is k-

connected, so by Menger's Theorem there are at least k independent paths of length

at least r between u and v. Thus n ≥ k (r − 1) + 2, so r ≤ n−2
k

+ 1.

Let the upper bound be an equality, and d (u, v) = r. Then n = k (r − 1) + 2, and

since there are k independent paths between u and v, all the vertices are on these

paths. Thus d (u) = d (v) = k. If another vertex w had degree k, then G− w would

be maximal k-degenerate with κ (G− w) = k − 1, which is impossible. Thus any

other pair of vertices has distance less than r.

The lower bound is sharp. For example, the graph Kk−1 +Kn−k+1 has diameter 2.

The upper bound is sharp for all k. For k = 1, the unique extremal graph is Pd+1. In

general, form a graph as follows. Establish a k× r− 1 grid of vertices. Add the edges

between vertices vi,j and vs,t if t = j + 1 or t = j = 1. (Thus we have a graph that

decomposes into r − 2 copies of Kk,k and one Kk.) Finally, add a vertex u adjacent

to vi,1 for all i and a vertex v adjacent to vi,r−1 for all i. It is easily checked that this

graph is maximal k-degenerate. (See Figure 10.)

Maximal k-core-free graphs have some interesting decompositions.
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Theorem 69. Let t1, . . . , tr be r positive integers which sum to t. Then a maximal t-

degenerate graph can be decomposed into r graphs with degeneracies at most t1, . . . , tr,

respectively.

Proof. Consider a deletion sequence of a maximal t-degenerate graph G. When a

vertex is deleted, the edges incident with it can be allocated to r subgraphs with at

most t1, . . . , tr edges going to the respective subgraphs. Thus the subgraphs have at

most the stated degeneracies.

In particular, a k-degenerate graph decomposes into k forests. These can be almost

trees, except for the initial k-clique. The graph G/H is formed by contracting the

subgraph H of G to a single vertex.

Corollary 70. A maximal k-degenerate graph G can be decomposed into Kk and k trees

of order n− k + 1, which span G/Kk.

Proof. If n = k, G = Kk, so let the k trees be k distinct isolated vertices. Build G by

successively adding vertices of degree k. Allocate one edge to each of the k trees in

such a way that each is connected. To do this, assign an edge incident with a vertex

of the original clique to the unique tree containing that vertex. Any other edges can

be assigned to any remaining tree, since every tree contains every vertex not in the

original clique.

Corollary 71. If k is odd, a maximal k-degenerate graph decomposes into k trees of

order n− k−1
2
.

Proof. Let k = 2r − 1. Then K2r can be decomposed into k trees of order r + 1.
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Figure 11: The Prufer 2-code of this graph is {(4, 6) , (1, 7) , (4, 7) , (6, 7)}.

Corollary 72. A maximal 2-degenerate graph has two spanning trees that contain all

its edges and overlap on exactly one edge. This 'overlap edge' can be any edge that is

the last to be deleted by the k-core algorithm.

2.1.4 Enumeration

We now consider counting maximal k-degenerate graphs. We �rst consider labeled

graphs. Cayley's tree formula states that the number of labeled trees on n vertices

is nn−2. Perhaps the easiest way to prove this is show that there is a bijection

between such trees and a certain type of sequences called Prufer sequences. We

seek to generalize this approach to maximal k-degenerate graphs. Borowiecki and

Patil [1988] [11] used a somewhat similar approach to generate sequences for rooted

maximal k-degenerate graphs. We �rst state an algorithm for how to generate such

a sequence.

Algorithm 73. (Prufer k-code)

Input: Labeled maximal k-degenerate graph of order n

Iteration: While more than k + 1 vertices remain, delete the least-labeled vertex v

of degree k, and let Ai be the unordered set of k neighbors of v.
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De�nition 74. A Prufer k-code is a sequence of n−k−1 sets of k unordered elements of

[n], (A1, . . . , An−k−1), satisfying the following condition: There exists an (n− k − 1)-

tuple of distinct elements of [n], B = (b1, . . . , bn−k−1) such that bi /∈ Aj, i ≤ j ≤

n− k − 1.

As we would hope, the algorithm produces a Prufer k-code.

Lemma 75. The Prufer k-code algorithm produces a unique Prufer k-code.

Proof. It clearly produces a list of n−k−1 (k − 1)-tuples. The ith vertex deleted can't

appear in the jth (k − 1)-tuple, i ≤ j ≤ n−k−1, since it is not its own neighbor and

after the ith step it has been deleted. Since there are no choices in the algorithm, it

cannot produce more than one code.

Theorem 76. There is a bijection between labeled maximal k-degenerate graphs and

Prufer k-codes.

Proof. In light of the previous lemma, we need only prove that the k-code algorithm

produces each k-code uniquely. This is true for n = k + 1. Assume the result holds

for order r ≥ k + 1, and let G be maximal k-degenerate with order r + 1, with

A = (A1, . . . , Ar−k) the corresponding code. No leaf label appears in A and every

nonleaf label appears. Thus the �rst vertex deleted has the least label not in A. Call

it x, and let its neighbors de�ne A1.

Thus every maximal k-degenerate graph producing A has least leaf x with neigh-

bors A1 since there is a label not appearing in A. Now G−x is maximal k-degenerate

with order r and code A′ = (A2, . . . , Ar−k). By induction, there is exactly one max-

imal k-degenerate graph G′ with this code. Adding x to G′ shows that exactly one

maximal k-degenerate graph corresponds to A.
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Figure 12: G is maximal 2-degenerate with 2-code {(4, 6) , (1, 7) , (4, 7) , (6, 7)}.

This suggests an algorithm for generating a maximal k-degenerate graph from its

k-code.

Algorithm 77. (Uncoding Prufer k-code)

Input: Prufer k-code (length n− k − 1, sets of k)

Initialization: Start with n labeled vertices and a list of labels 1− n.

Iteration: While there is a k-tuple remaining, determine the least remaining label

not appearing in the k-tuples. Make the corresponding vertex adjacent to the vertices

corresponding to the next k-tuple. Delete that label and k-tuple.

Conclusion: Add a clique induced by the k + 1 remaining labels.

As an example, consider uncoding the code {(4, 6) , (1, 7) , (4, 7) , (6, 7)}, which was

produced in the earlier example. Of the numbers 1-7, 2, 3, and 5 do not appear,

and 2 is the smallest of these, so vertex 2 is adjacent to 4 and 6. Next, we �nd 3 is

adjacent to 1 and 7. Since 1 does not appear in the �nal two pairs, 1 is adjacent to

4 and 7. We continue in this manner until �nally adding a clique induced by vertices

5, 6, and 7. The result is the original graph. (See Figure 12.)

Proposition 78. The uncoding algorithm produces a unique maximal k-degenerate graph.
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Order 3 4 5 6

Number 1 6 100 3285

Table 2: The number of labeled maximal 2-degenerate graphs.

Proof. This is true for n = k + 1, given the empty code. Assume the result holds for

r > k + 1, and let A be a k-code of length r − k. Let a be the smallest element not

appearing in A. Now there is a unique maximal k-degenerate graph G′ corresponding

to A′ = (A2, . . . , Ar−k). Then making a adjacent to A1 yields a unique maximal

k-degenerate graph G of order r + 1.

These results suggest an approach for counting labeled maximal k-degenerate graphs.

We need only count the corresponding sequences.

Proposition 79. There are at most
(
n
k

)n−k−1
labeled maximal k-degenerate graphs of

order n, with equality exactly when k = 1 or n < k(k+1)
k−1

.

Proof. There are
(
n
k

)
di�erent possible sets, and the code contains n− k− 1 such sets.

If there are fewer elements in the sets than vertices, than any code with n−k−1 sets

of k elements from [n] will yield a graph since there will always be some element that

does not appear in any of the sets. This is equivalent to k (n− k − 1) < n, which

gives k = 1 or n < k(k+1)
k−1

. However, if k (n− k − 1) ≥ n, any sequence that contains

every element of [n] will not yield a graph.

It seems promising that the number of such sequences can be determined exactly,

but this has not been accomplished yet. For k = 2, the numbers of labeled maximal

k-degenerate graphs for small orders are given in Table 2.
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Order 4 5 6 7

Number 1 3 11 62

Table 3: The number of unlabeled maximal 2-degenerate graphs.

The upper bound for order 6 is 3375, but there are 90 =
(

6
2

)(
4
2

)(
2
2

)
sequences that

don't produce graphs because they contain all six numbers. We can generalize this.

Corollary 80. There are exactly
(
n
k

)n−k−1−
∏n−k−1

t=1

(
t·k
k

)
labeled maximal k-degenerate

graphs of order n when n = k(k+1)
k−1

.

Proof. If n = k(k+1)
k−1

, then k (n− k − 1) = n. The only way that the uncoding algorithm

could fail is if all n numbers occur exactly once in the code. This can occur in exactly∏n−k−1
t=1

(
t·k
k

)
ways.

We can also consider enumeration of unlabeled maximal k-degenerate graphs. This

has been accomplished for trees via generating functions, but this does not appear

to generalize easily to larger k. We have already seen that for k ≥ 2, the number of

nonisomorphic maximal k-degenerate graphs of order k + 3 is 3. By tedious exami-

nation of cases, I determined the following numbers of maximal 2-degenerate graphs

of small orders, given in Table 3.
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Figure 13: The maximal 2-degenerate graphs of orders 5 and 6.
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2.1.5 k-Trees

There is one particular subclass of maximal k-degenerate graphs that is of interest.

De�nition 81. A k-tree is a graph that can be formed by starting with Kk+1 and

iterating the operation of making a new vertex adjacent to all the vertices of a k-

clique of the existing graph. The clique used to start the construction is called the

root of the k-tree.

It is easy to see that a k-tree is maximal k-degenerate. A 1-tree is just a tree.

However, k-trees and maximal k-degenerate graphs are not equivalent for k ≥ 2.

In fact, every maximal k-degenerate graph contains an induced k-tree. For n ≥

k + 2, Kk+2 − e must occur. No larger k-tree can be guaranteed. For example, let U

be a set of vertices of Kk+2− e containing both vertices of degree k, and let V be the

partite set of order k of Kk,r. Then (Kk+2 − e) ∪
U=V

Kk,r has order n ≥ k + 3 and no

larger induced k-tree.

Theorem 82. Every maximal k-degenerate graph G contains a unique k-tree of largest

possible order containing a k + 1-clique that can be used to begin the construction of

G.

Proof. It is obvious that every maximal k-degenerate graph can be constructed begin-

ning with a maximal k-tree. We prove uniqueness. Suppose to the contrary that there

is a maximal k-degenerate graph containing two distinct maximal k-trees either of

which can be used to begin its construction. Let G be a counterexample of minimum

order n ≥ k + 3 containing k-trees T1 and T2. Divide the vertices of G into V (T1),

V (T2), and S = V (G)− V (T1)− V (T2). Now G has at least one vertex v of degree

k. If v ∈ S, then G − v can be constructed starting with either k-tree, so there is a
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smaller counterexample. If v ∈ V (T1) and n (T1) ≥ k + 2, then G− v can be still be

constructed starting with some other vertex of T1, so there is a smaller counterexam-

ple. If v ∈ V (Ti), i ∈ {1, 2}, and Ti = Kk+1, then G cannot be constructed starting

with Ti since any maximal k-tree that can be used to begin construction of G must

contain Kk+2 − e. Thus in any case we have a contradiction.

We o�er two characterizations of k-trees as maximal k-degenerate graphs. A graph

is chordal if every cycle of length more than three has a chord, that is, it contains no

induced cycle other than C3.

Theorem 83. A graph G is a k-tree ⇐⇒ G is maximal k-degenerate and G is chordal

with n ≥ k + 1.

Proof. (⇒) Let G be a k-tree. G is clearly maximal k-degenerate, since vertices of

degree k can be successively deleted until Kk+1 remains. The construction implies

that G has a simplicial elimination ordering, so it is chordal.

(⇐) Assume G is maximal k-degenerate and chordal. If n = k + 1, it is certainly

a k-tree. Assume the result holds for order r, and let G have order r+ 1. Then G has

a vertex v of degree k. The neighbors of v must induce a clique since if v had two

nonadjacent neighbors x and y, an x − y path of shortest length in G − v together

with yv and vx would produce a cycle with no chord. Thus G− v is a k-tree, hence

so is G.

The second characterization of k-trees as maximal k-degenerate graphs involves

subdivisions.

Theorem 84. A maximal k-degenerate graph is a k-tree if and only if it contains no

subdivision of Kk+2.
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Proof. (⇒) Let G be a k-tree. Certainly Kk+1 contains no subdivision of Kk+2. Sup-

pose G is a counterexample of minimum order with a vertex v of degree k. Then

G−v is a k-tree with no subdivision of Kk+2, so the subdivision in G contains v. But

then v is not one of the k + 2 vertices of degree k + 1 in the subdivision, so it is on

a path P between two such vertices. Let its neighbors on P be u and w. But since

the neighbors of v form a clique, uw ∈ G− v, so P can avoid v, implying G− v has

a subdivision of Kk+2. This is a contradiction.

(⇐) Let G be maximal k-degenerate and not a k-tree. Since G is constructed

beginning with a k-tree, for a given construction sequence there is a �rst vertex in

the sequence that makes G not a k-tree. Let v be this vertex, and H be the maximal

k-degenerate subgraph induced by the vertices of the construction sequence up to v.

Then n (H) ≥ k + 3, dH (v) = k, v has nonadjacent neighbors u and w, and H − v

is a k-tree. Now there is a sequence of at least two k + 1-cliques starting with one

containing u and ending with one containing w, such that each pair of consecutive

k + 1-cliques in the sequence overlap on a k-clique. Then two of these cliques and a

path through v produces a subdivision of Kk+2.

Dirac [1964] [20] determined the minimum size of a graph G of order n that will

guarantee that G contains a subdivision of K4. We can prove this simply and deter-

mine the extremal graphs.

Corollary 85. If G has m ≥ 2n − 2, then G contains a subdivision of K4, and the

graphs of size 2n− 3 that fail to contain a subdivision of K4 are exactly the 2-trees.

Proof. Let G have m ≥ 2n − 2 = (3− 1)n −
(

3
2

)
+ 1. By Corollary 59, G contains a

3-core. By Corollary 47, it contains a subdivision of K4. If a graph of size 2n− 3 has

no 3-core, it is maximal 2-degenerate. By the previous theorem, exactly the 2-trees

do not contain a subdivision of K4.
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A natural generalization of this result is that ifm ≥ 3n−5, G contains a subdivision

of K5. This was conjectured by Dirac and proved by Mader [1998] [41] using a much

more intricate argument.

49



2.2 Monocore and Collapsible Graphs

2.2.1 k-Monocore Graphs

We have previously de�ned a monocore graph to be a graph G with δ (G) = Ĉ (G).

Thus a graph is k-monocore if and only if Ci (G) =

 G i ≤ k

Ø i > k
.

We have seen that many important classes of graphs are monocore, and determined

a few properties of such graphs. In this section we will extensively examine the

properties of such graphs.

One common technique for understanding a class of graphs is examining its ex-

tremal graphs. That is, graphs in the class which either cannot have any edges added

or cannot have any edges deleted without ceasing to be in that class. We will call these

two types of extremal graphs maximal and minimal extremal graphs, respectively.

We will �rst examine the maximal extremal k-monocore graphs. In fact, these are

just maximal k-degenerate graphs. We have already seen that maximal k-degenerate

graphs are k-monocore. A partial converse to this result is true.

Lemma 86. Every k-monocore graph is contained in a maximal k-degenerate graph.

Proof. Let G be k-monocore. Determine a deletion sequence for G, and reverse it to

obtain a construction sequence. Now construct graph G′ by adding not only the edges

of G, but enough additional edges so that min {k, i− 1} edges are added when the

ith vertex is added. The resulting graph is maximal k-degenerate.

Adding an edge to a maximal k-degenerate graph creates a k+ 1-core, so maximal

k-monocore graphs are maximal k-degenerate.

We can use this lemma to determine sharp bounds on the size of a k-monocore

graph.
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Proposition 87. The size m of a k-monocore graph G of order n satis�es

⌈
k · n

2

⌉
≤ m ≤ k · n−

(
k + 1

2

)
.

Proof. The sum of the degrees of G is at least k · n, so m ≥
⌈
k·n
2

⌉
. The upper bound

follows from the previous lemma.

Both bounds are sharp. The graphs achieving the upper bound are maximal k-

degenerate graphs. For n or k even, the graphs achieving the lower bound are just

regular graphs, and for n and k both odd, they are graphs with exactly one vertex of

degree k + 1, and all others of degree k.

We can make some observations about the degree sequences of k-monocore graphs.

Lemma 88. If a nonincreasing sequence of integers d1, . . . , dn is the degree sequence of

a k-monocore graph G, then k ≤ di ≤ min {n− 1, k + n− i} and
∑
di = 2m, where

m satis�es the bounds of the previous theorem for 0 ≤ k ≤ n− 1.

Proof. For the �rst inequalities, the lower bound is obvious, and the upper bound

follows from the corresponding result for maximal k-degenerate graphs. The latter

equation follows from the �rst theorem of graph theory and the previous result.

We will prove that the converse to this result holds. We need another lemma to

reduce the set of sequences that we need to consider.

Lemma 89. The converse to Lemma 88 holds if and only if every nonincreasing se-

quence of integers d1, . . . , dn satisfying d1 ≤ n − 1, dk = dn = k, and
∑
di = 2m is

graphical.
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Proof. (⇒) The latter set of sequences is a subset of the former.

(⇐) Assume the hypothesis and that the conjecture holds for order r ≥ k+ 2. Let

D : d1, . . . , dr+1 be a nonincreasing sequence that satis�es the given properties. If

D has fewer that k integers larger than k, then it is graphical by assumption. Any

graph G satisfying D is a k-core since dn = δ (G) = k and cannot have a k + 1-core,

so it is k-monocore.

Hence we assume additionally that D has at least k integers larger than k. Let

D′ : d′1, . . . , d
′
r be the sequence formed by deleting dr+1 = k and decreasing k other

numbers greater than k by one, including any that achieve the maximum. (There are

at most k by Lemma 63.) Then D′ satis�es all the hypotheses and has length r, so it

is the degree sequence for some k-monocore graph H. Add vertex vr+1 to H, making

it adjacent to the k vertices with degrees that were decreased to form D′. Then the

resulting graph G has degree sequence D and is k-monocore.

In light of the lemma, we need only consider sequences that end with many k's.

We use the following operations to limit the number of k's at the end of the sequence

that we must consider.

De�nition 90. Operation. [Add a vertex of degree k = 2r]

Subdivide r independent edges and identify the r new vertices. This produces a

graph with all the same degrees as before plus one more vertex of degree k.

Operation. [Add two vertices of degree k = 2r + 1]

Delete 2r edges which use each vertex at most twice, add two adjacent vertices,

and make each of them adjacent to 2r of the neighbors of the deleted edges. This

produces a graph with a degree sequence that adds two k's to the degree sequence of

the original graph.

It is easily veri�ed that the required sets of edges exist.
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Proposition 91. The edge independence number β (G) of a k-core G satis�es β (G) ≥⌈
k
2

⌉
.

Proof. We use induction on k. The result is obvious when k is 0 or 1. Assume it holds

for all k with 0 ≤ k ≤ r and let G be an r + 2-core. Let e = uv be an edge of G.

Then G− u− v is an r-core, so β (G− u− v) ≥
⌈
r
2

⌉
, and β (G) ≥

⌈
r
2

⌉
+ 1 =

⌈
r+2

2

⌉
.

The bound is sharp for empty graphs, stars, and complete graphs. Note that the

second operation above can work by using two independent sets of edges.

Now we can prove the theorem.

Theorem 92. A nonincreasing sequence of integers d1, . . . , dn is the degree sequence

of some k-monocore graph G if and only if k ≤ di ≤ min {n− 1, k + n− i} and∑
di = 2m, where m satis�es the bounds of the previous theorem for 0 ≤ k ≤ n− 1.

Proof. (⇒) The forward direction is just Lemma 88.

(⇐) We use induction on k. For k = 0, it is obvious. Assume the conjecture holds

for k ≥ 1. By Lemma 89, the conjecture will hold if it holds for sequences with at

most k − 1 integers larger than k. Let D be such a sequence of length n. We may

assume that d1 is n − 1 or n − 2, since otherwise we may delete some k's so that

this holds, obtain a graph for this shorter sequence, and use the above operations to

obtain a graph with the longer sequence.

If d1 = n−1, then the sequence D′ formed by deleting v1 and reducing every other

element by one has at most k − 2 integers larger than k − 1. Thus it is the degree

sequence of a k−1-monocore graph H by the induction hypothesis, and G = H+v is

k-monocore. If d1 = n− 2, then the sequence D′ formed by deleting v1 and reducing

all integers but one of the k's by one has at most k−1 integers larger than k−1. Thus

it is the degree sequence of a k − 1-monocore graph H by the induction hypothesis,
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and the graph G formed by joining a vertex to the vertices of H with degrees that

had been reduced is k-monocore. Thus the conjecture holds for k-monocore graphs

by induction.

Thus Theorem 92 can be proven as a corollary of this theorem.

A related question is when a given graphical sequence must be the degree sequence

of a monocore graph. For example, the sequence 2,2,2,1,1 could represent P5, which

is 1-monocore, or K3 ∪K2, which is not.

2.2.2 k-Collapsible Graphs

We will next consider a variation on the lower extremal k-monocore graphs, where

instead of considering deleting an edge, we consider deleting vertices.

De�nition 93. A graph G is k-collapsible if it is k-monocore and has no proper induced

k-core.

This immediately implies that a k-monocore graph is k-collapsible if and only if

for every vertex v in G, G− v has no k-core.

For small values of k, we can characterize k-collapsible graphs.

Proposition 94. Let G be a graph.

G is 0-collapsible ⇐⇒ G = K1.

G is 1-collapsible ⇐⇒ G = K2.

G is 2-collapsible ⇐⇒ G is a cycle.

Proof. Certainly the given graphs are all collapsible. Every 0-monocore graph contains
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a vertex, and every 1-monocore graph contains an edge. We have seen that every 2-

monocore graph contains a cycle.

The structure of k-collapsible graphs is considerably more complicated for k > 2.

Collapsible graphs are interesting in part because every k-monocore graph contains

one.

Proposition 95. Every k-monocore graph G contains a k-collapsible graph as an in-

duced subgraph. Indeed, every component of G contains such a subgraph.

Proof. If G has order n = k + 1, then the unique k-monocore graph of that order,

G = Kk+1 is k-collapsible. Assume the result holds for all k-monocore graphs with

order up to r, and let G have order r + 1. If G − v has no k-core for all v in G,

then G is k-collapsible. If not, then there is some vertex v in G so that G− v has a

k-core. Let H be the k-core of G−v. Then H is an induced subgraph of G with order

at most r, so by induction it contains a k-collapsible subgraph. The �nal statement

holds since every component of a k-monocore graph is k-monocore.

We can o�er a characterization of sorts for k-collapsible graphs.

De�nition 96. A barrier in a k-monocore graph is a minimal cutset S ⊂ V (G) such

that for some component H of G− S, every vertex v of S has dG−H (v) ≥ k.

Note that every vertex in a barrier of a k-monocore graph G necessarily has degree

greater than k in G.
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Figure 14: The set S = {u, v, w} is a barrier of G since G− {x} is a 3-core.

Theorem 97. A k-monocore graph G is collapsible ⇐⇒ it does not have a barrier.

Proof. If G has a barrier S and corresponding component H, then the vertices of G−H

all have degree at least k. Thus G has a proper k-core, so it is not collapsible.

If G is not collapsible, then it has a proper induced subgraph F such that is a

k-core. Then the vertices of F adjacent to vertices of G− F must be a barrier.

Checking every set of vertices, or even every cutset of vertices of degree greater

than k is not very practical. It is easier to determine whether G has a barrier by

running the k-core algorithm on G− v for all v.

A barrier need not be a large set or have large degrees. Indeed, for all k ≥ 3, there

is a k-monocore graph G with a barrier of one vertex of degree k + 1 or k + 2. If k is

odd, a barrier need only have one vertex of degree k + 1, while if k is even, it need

have no more than two.

For k even, such a graph can be constructed by taking two copies of Kk+1 and

adding an edge between them. Two vertices of degree k + 1 is the least possible by

the First Theorem of graph theory.

For k odd, k = 2r+1, G can be constructed by takingKk+1, deleting r independent

edges, and making a new vertex v adjacent to the vertices they were incident with.

Finally, add an edge between v and a new copy of Kk+1. The graph G has the desired

properties. (See Figure 15.)
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Figure 15: Examples of non-collapsible graphs.

Collapsible graphs include a well-known family of graphs.

Corollary 98. A regular graph is collapsible ⇐⇒ it is connected.

We can use the previous theorem to �nd information on the structure of k-

collapsible graphs.

Corollary 99. Let G be a k-core with vertex v. Then Ck (G− v) = Ck (G) − v ⇐⇒

every neighbor of v has degree at least k + 1.

The next corollary follows from the previous one.

Corollary 100. If G is k-collapsible, then every vertex of G is adjacent to a vertex of

degree k. This implies that the vertices of degree k of a k-collapsible graph G form a

total dominating set of G.

The converse if false, as can be seen for example in the graphs with small barriers

constructed above. Even if the dominating set is connected, it is still false. For

example, the graph formed by adding a perfect matching between the vertices of Cn

and Kn, n > 3, is not 3-collapsible.
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Figure 16: A 3-collapsible graph with 2/5 of its vertices having degree 3.

Conjecture 101. Every k-collapsible graph G of order n has at least 2
2k−1

n vertices of

degree k.

For k = 3 and every order n = 5r, r ≥ 2, this conjectured bound is achieved. Let

the vertices of degree 4 form a cycle of 3r vertices numbered 0, ..., 3r − 1, and add

edges between vertices 3i+ 2 and 3i+ 4 (mod 3r). Then for each i, 0 ≤ i ≤ r−1, add

a pair of adjacent vertices and make both adjacent to vertex 3i and one each adjacent

to vertices 3i + 1 and 3i + 2. This graph has 3r vertices of degree 4 and 2r vertices

of degree 3 and is 3-collapsible. (See Figure 16.)

We can bound the size of a k-collapsible graph.

Theorem 102. For k ≥ 1, the size m of a k-collapsible graph G of order n satis�es

⌈
k · n

2

⌉
≤ m ≤ (k − 1) · n−

(
k

2

)
+ 1.
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Proof. The lower bound is the same as that for k-monocore graphs.

For the upper bound, let G be k-collapsible and e an edge of G incident with a

vertex v of degree k. Then G − e is k-core free, since dG−e (v) < k and G has no

proper induced k-core. Then G − e is contained in a maximal k-core free graph H,

and G ⊆ H + e. Thus m ≤ (k − 1) · n−
(
k
2

)
+ 1.

The relationship between k-collapsible graphs and maximal k-core free graphs seen

in the previous proof is a pleasant surprise.

It is not hard to show that if G is maximal k-core-free and G + e is k-monocore,

it need not be k-collapsible.

The upper bound of this theorem is sharp. For example, for k ≥ 3 the graph

G = Cn−k+2 +Kk−2 achieves the upper bound and is k-collapsible since every vertex

on the cycle has degree k and G has no k-core not containing one of them. These are

not the only graphs achieving the upper bound, as we will soon see. This example

also shows that for all k, n with 3 ≤ k ≤ n − 1 there is a k-collapsible graph with

maximum degree n − 1. Along with the cycles, this shows that for all k, n with

2 ≤ k ≤ n− 1 there is a k-collapsible graph of order n.

2.2.3 k-Core-critical Graphs

While collapsible graphs are a sort of extremal graph for k-monocore graphs, they

are also a class of graphs that have their own extremal graphs. We �rst consider

minimal k-collapsible graphs.

De�nition 103. A k-collapsible graph G is k-core-critical if no proper subgraph of G

is a k-core. A graph is core-critical if it is k-core-critical for some k.

This immediately implies that a k-collapsible graph is k-core-critical exactly when
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it has no edge e such that G− e is a k-core. This implies the following result.

Proposition 104. A k-collapsible graph G is k-core-critical ⇐⇒ no edge of G joins

vertices of degree more than k.

For all k, n with 3 ≤ k ≤ n − 1 there is a k-core-critical graph. For example, for

k ≥ 3 the graph G = Cn−k+2 +Kk−2 is k-core-critical since every vertex on the cycle

has degree k and no others are adjacent. These are not the only graphs achieving the

upper bound. Along with the cycles, this shows that for all k, n with 2 ≤ k ≤ n− 1

there is a k-core-critical graph of order n.

The previous result allows us to bound the number of vertices of minimum degree

in a k-core-critical graph.

Theorem 105. A k-core-critical graph G with order n has at least
⌈(

k+1
2k

)
n
⌉
vertices

of degree k and hence at most
⌊(

k−1
2k

)
n
⌋
vertices of degree more than k.

Proof. Let A be the set of vertices of G of degree k and B the set of vertices of degree

more than k, and let their sizes be a and b, respectively. By the previous result, G

has no BB edges. Since each vertex of degree k is adjacent to another such vertex,

G has at least
⌈
a
2

⌉
AA edges. The sum of the degrees of the A vertices is k · a, so G

has at most k · a− 2
⌈
a
2

⌉
AB edges. Thus G has size at most k · a−

⌈
a
2

⌉
=
⌊(

2k−1
2

)
a
⌋
.

Since the B vertices have degree at least k + 1, b ≤
⌊

1
k+1

(
k · a− 2

⌈
a
2

⌉)⌋
≤⌊(

k−1
k+1

)
a
⌋
. Then n = a + b ≤ a +

⌊(
k−1
k+1

)
a
⌋
≤
⌊(

2k
k+1

)
a
⌋
. Thus a ≥

⌈(
k+1
2k

)
n
⌉

and b ≤
⌊(

k−1
2k

)
n
⌋
.

For k = 3, this bound gives a ≥
⌈(

2
3

)
n
⌉
and b ≤

⌊(
1
3

)
n
⌋
. The bound is sharp for

k = 3.
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Figure 17: The 3-necklace.

De�nition 106. The r-necklace is the graph formed from the multigraph Cr by replac-

ing each edge by K4 − e, where the nonadjacent vertices overlap the vertices of the

edge they replace.

The r-necklace has order 3r, 2r vertices of degree 3, r vertices of degree 4, and is

3-core-critical. Thus the bound is sharp for this family of graphs. Consider replacing

one K4− e in the necklace by W4− e, where e is incident with the center vertex. This

yields a graph that has order 3r + 1, includes 2r + 1 vertices of degree 3, r vertices

of degree at least 4, and is 3-core-critical. Allowing two W4 − e's in the construction

yields a graph that has order 3r + 2, 2r + 2 vertices of degree 3, r vertices of degree

at least 4, and is 3-core-critical. The bound is also sharp for n = 5, but it is one o�

for n = 4, since K4 is the only possibility in that case.

It is not immediately clear whether this bound is sharp for k > 3. It is certainly

not sharp for n = k + 1.

Conjecture 107. The bound of Theorem 105 is sharp for in�nitely many orders n for

all k > 3.
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Figure 18: A 4-core-critical graph with 5/8 of its vertices having degree 4.

We now describe an in�nite class of 4-core-critical graphs that have 5/8 of their

vertices with degree 4. These graphs have two vertex classes U and W . U has 10r

vertices numbered 0 to 10r−1 andW has 6r vertices numbered 0 to 6r−1. The graph

has the following edges. Vertex u5i is adjacent to w 3
5
i, w 3

5
i−1, and w 3

5
i+1. Vertices

u5i+1 and u5i+2 are both adjacent to w 3
5
i, w 3

5
i+1, and w 3

5
i+2. Vertices u5i+3 and u5i+4

are both adjacent to w 3
5
i+1, w 3

5
i+2, and w 3

5
i+3. Finally, u2i and u2i+1 are adjacent.

(Indices for U and W are taken mod 10r and 6r, respectively.)

This construction makes all vertices in U have degree 4 and all in W have degree

5. Each vertex in W has all its neighbors in U . Each vertex in U has one neighbor in

U , and this pair has at least two common neighbors in W . These vertices in W have

neighbors in U on either 'side' of the original pair. Thus when any vertex is deleted,

the graph collapses. This construction is illustrated for order 16 in Figure 18.

Let k be odd. Then the graph
(
k+1

2

)
K2 +Kk−1 is k-core-critical and achieves the

bound of Theorem 105 since it has k + 1 vertices of degree k and k − 1 vertices of

degree k + 1.
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2.2.4 Enumeration of k-Collapsible Graphs

Since we do not have a general description of k-collapsible graphs for k ≥ 3, we

may examine the classes of k-collapsible graphs with additional speci�ed properties.

Certainly the unique k-collapsible graph of order k + 1 is Kk+1. We can describe the

collapsible graphs of order k + 2.

Proposition 108. Let l =
⌊
k+2

2

⌋
, and let Gr = Kk+2 − rK2, 2 ≤ r ≤ l. Then Gr is

k-collapsible, so there are l − 1 =
⌊
k
2

⌋
k-collapsible graphs of order k + 2. Gl is the

unique k-core-critical graph of order k + 2.

This follows since the complement of a k-collapsible graph of order k+2 must have

maximum degree 1. We can generalize this idea.

Proposition 109. Let k ≤ n− 1. Then the number of k-core-critical graphs of order n

equals the number of graphs that are maximal with respect to the property of having

maximum degree n− k − 1.

Proof. The complement of a k-core-critical graph G must have maximum degree n−

k − 1. If the complement were not maximal with respect to this property, G would

not be minimal.

Corollary 110. A generating function for the number of k-core-critical graphs of order

n = k + 3, k ≥ 3, is

G (x) =
(
1 + x+ x2

) ∞∏
n=3

1

1− xn
.

Proof. The graphs that are maximal with respect to the property of having maximum

degree 2 have at most one component that is K1 or K2. Every other vertex in the
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complement must have degree 2, so the other components must be cycles. Graphs

that are 2-regular correspond to partitions of the integer n into integers that are at

least three. Now 1
1−xn = 1 + xn + x2n + . . ., so this product counts such partitions.

Multiplying by 1+x+x2 adds the n, n−1, and n−2 terms of the sequence together.

Thus the generating function is as stated.

The �rst few terms of this sequence are 4, 5, 7, 9, 12, 15, ... .

We can also examine the number of k-collapsible graphs with a given maximum

degree.

Proposition 111. The number of k-collapsible graphs G of order n with 4 (G) = n− 1

equals the number of k − 1-collapsible graphs with order n− 1.

This follows since deleting a vertex adjacent to all other vertices of a k-collapsible

graph results in a k − 1-collapsible graph with order n− 1.

Corollary 112. The number of k-core-critical graphs G of order n with 4 (G) = n− 1

equals the number of connected regular graphs with order n− 1.

2.2.5 3-Collapsible Graphs

Since 3-collapsible graphs are the smallest undecided case, it makes sense to exam-

ine them in more detail. In addition to connected cubic graphs, another well-known

family of graphs that are 3-collapsible are the wheels, which are the only ones with

maximum degree n − 1. Examining small orders, we see K4 and W4 are the unique

3-core-critical graphs of order 4 and 5. For order 6, by the earlier result we have

four 3-core-critical graphs of order six. They are W5, 2K2 + 2K1, K3×K2, and K3,3.

The �rst two achieve the maximum possible size, while the latter two do not. Both
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Figure 19: The four 3-core-critical graphs of order 6.

4\ n 4 5 6 7 8 9

3 1 0 2 0 5 0

4 1 1 4 6 28

5 1 1 6 27

6 1 2 11

7 1 2

8 1

Total 1 1 4 6 20 69

Table 4: The number of 3-core-critical graphs with order n and maximum degree 4.

can have a single edge added, uniquely up to isomorphism in both cases, and still be

3-collapsible.

By exhaustive (and exhausting) examination of cases, I determined the following

numbers of 3-core-critical graphs with order n and maximum degree4, given in Table

4.

Justi�cation of the larger numbers in this table is too tedious to include. As an

example, see Figure 20 for the four 3-core-critical graphs with order seven and a single

vertex of degree four.
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Figure 20: The four 3-core-critical graph with order 7 and 4 = 4.

It is not too hard to determine the number of minimal 3-collapsible graphs with

order n, 4 = n− 2.

Proposition 113. The number of 3-core-critical graphs with order n, 4 = n − 2, is⌊
n−4

2

⌋
.

Proof. Let v be the vertex of G with degree n − 2. Then G has one vertex u not

adjacent to v. Then G − v has all vertices of degree 2 except u. Thus G − v − u is

a linear forest with nontrivial paths, and the endvertices of the paths are adjacent to

u. The linear forest has at least two components, since u has degree at least 3, and it

has at most two since the graph induced by u, v, and exactly two of them is a 3-core.

Thus the number of such graphs is the number of integer solutions to x+ y = n− 2,

2 ≤ x ≤ y ≤ n− 4, which is
⌊
n−4

2

⌋
.

We might hope to determine an operation characterization of 3-collapsible graphs.

Toward that end, we have the following partial results. We say that a graph operation

preserves a given class of graphs if applying it to any graph or graphs in that class

results in a graph in that class.

De�nition 114. The operation splitting a vertex v of degree at least 4 replaces x by
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two adjacent vertices x and y joins each neighbor of v with exactly one of them so

that both x and y have degree at least 3.

Proposition 115. Splitting a vertex preserves 3-cores and 3-monocore graphs. It pre-

serves 3-collapsible graphs with the added condition that each of the vertices resulting

from the split has a neighbor of degree 3. It preserves 3-core-critical graphs with the

added condition that at most one of the vertices resulting from the split has degree

more than 3.

Proof. If G is a 3-core, then splitting a vertex results in a graph with minimum degree

at least 3. Let G be 3-monocore and H be the result of splitting a vertex v. Then H

has no 4-core not containing v, and if it had one containing v then so would G.

Let G be 3-collapsible and H be the result of splitting a vertex v into x and y.

Then G− v has no 3-core and with the added restriction neither do H − x or H − y.

Thus H is 3-collapsible.

Let G be 3-core-critical and H be the result of splitting a vertex v into x and y.

Then v has degree at least 4 in G, so its neighbors have degree 3. With the added

restriction, no neighboring vertices of H have degree more than 3. As before, H is

3-core-critical.

We have the following theorem due to Tutte [Bollobas [7] p.16] that provides an

operation characterization of 3-connected graphs.

Theorem 116. [Tutte] A graph is 3-connected ⇐⇒ it is a wheel or can be constructed

from one by repeatedly applying the operations:

1. Add an edge.

2. Split a vertex.
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The proof of this theorem is fairly di�cult.

2.2.6 Maximal k-Collapsible Graphs

Having considered k-core-critical graphs, we can also consider the other extremal

class of k-collapsible graphs.

De�nition 117. A k-collapsible graph G is maximal k-collapsible if the addition of any

edge makes it cease to be k-collapsible.

Every k-collapsible graph is necessarily contained in a maximal k-collapsible graph.

Since adding an edge to a maximal k-collapsible graph makes it cease to be collapsible,

it either has a k + 1-core or a proper induced k-core. In fact, it must be the latter.

Proposition 118. Adding an edge to a maximal k-collapsible graph G produces a proper

induced k-core.

Proof. Suppose instead it produces a k+ 1-core. Then G contains a subgraph H with

all but at most two vertices having degree at least k + 1 in H and either one vertex

of degree k or two nonadjacent vertices of degree k in H. But deleting a vertex with

degree k in H leaves G with a k-core, so it is not collapsible.

We have seen that a sharp upper bound for the size of a k-collapsible graph is

m ≤ (k − 1) ·n−
(
k
2

)
+1, so any graph achieving this bound is necessarily maximal k-

collapsible. In fact, there are graphs that are both maximal and minimal 3-collapsible

at the same time.

De�nition 119. A k-collapsible graph G is k-fragile if it is both maximal and minimal.

68



The wheels are 3-fragile, as are several other 3-collapsible graphs considered previ-

ously that achieve the upper bound. Perhaps surprisingly, there are graphs that are

3-fragile without achieving the upper bound.

Proposition 120. The r-necklace is 3-fragile and for r ≥ 3 does not achieve the upper

bound for the size of a k-collapsible graph.

Proof. We have seen that it is minimal 3-collapsible, and it has order 3r and size 5r, so

it does not achieve the upper bound except when r = 2. Consider adding an edge to

the r-necklace. If we add an edge incident with a vertex of degree 3, then its neighbor

of degree 3 could be deleted to produce a smaller 3-core. If the edge is added between

two vertices of degree 4, deleting one part of the 'cycle' between these vertices yields

a smaller 3-core.

It is unknown whether k-fragile graphs exist for larger values of k.

It is unclear how small the size of a maximal 3-collapsible graph can be. We o�er

the following conjecture, which is based on the size of the r-necklace.

Conjecture 121. The size m of a maximal 3-collapsible graph of order n satis�es m ≥⌈
5
3
n
⌉
.

2.2.7 Connectivity of k-Cores

We can also analyze other structural properties of monocore and collapsible graphs.

One example is connectivity. Certainly if G is k-connected, then it is a k-core. This

holds for minimally connected graphs as well, but in this case much more is also true.

Theorem 122. Let G be a minimally k-connected graph. Then the vertices of degree
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Figure 21: A minimally 3-connected graph that is not 3-collapsible.

more than k induce a (possibly empty) forest.

This theorem is due to Mader and appears in [Bollobas [7] p. 21-24]. The proof is

quite di�cult.

Corollary 123. If a graph is minimally k-connected, then it is k-monocore.

A minimally k-connected graph need not be k-collapsible. For example, in the

graph in Figure 21, deleting the center vertex does not destroy the 3-core, but leaves

a graph with connectivity 2.

Conjecture 124. If a graph is minimally k-edge-connected, then it is k-monocore.

This conjecture holds for minimally 0-edge-connected graphs (empty graphs) and

minimally 1-edge-connected graphs (trees). Mader [40] proved [see West [60] p.175]

that that if G is minimally k-edge-connected, then δ (G) = k.

A k-core need not be k-connected.
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Proposition 125. There is a k-monocore graph that is l-connected for each 0 ≤ l ≤ k

and the smallest possible order of such a graph is 2k + 2− l.

Proof. Let G be k-monocore and l-connected. If G is disconnected, then every com-

ponent is a k-core with order at least k + 1. The graph 2Kk+1 uniquely achieves

the minimum. If G is connected, then it has a minimal cutset S of size l, and each

component of G−S has order at least k+ 1− l, so 2k+ 2− l is the smallest possible

order. The graph Kk+1 ∪
Kl

Kk+1 achieves the bound.

Certainly a k-collapsible graph must be connected. The same bound as before holds

for them except when l = 1.

Proposition 126. The minimum order n of an l-connected k-collapsible graph is given

by

n =

 2k + 3 l = 1

2k + 2− l else
.

Proof. For l ≥ 2, use a construction similar to before but modify the intersection of

the cliques. Let a = 2l−k−2. If a ≤ 0, use Kk+1 ∪
Kl

Kk+1. If a = 1, use Kk+1 ∪
l
2
K2

Kk+1

if l is even and given H =
(
l−3
2

)
K2 ∪ P3, use Kk+1 ∪

H
Kk+1 if l is odd. If a > 1, let H

be a-core-critical and use Kk+1 ∪
H
Kk+1. In each case, G is k-collapsible.

If l = 1, the earlier construction produces Kk+1 ∪
v
Kk+1, which is not collapsible,

so each block must have order at least k + 2. Instead, form G by subdividing
⌈
k
4

⌉
independent edges of each copy of Kk+1 and identifying all the subdivision vertices

together. Then G has order 2k + 3 and is k-collapsible.

Note that this construction produces k-core-critical graphs.
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Figure 22: A 4-regular graph with no 3-connected subgraph.

We have seen that a k-core need not be k-connected. But perhaps a k-core has

a subgraph with high connectivity. For 0 ≤ k ≤ 2, a k-core contains a k-connected

subgraph. But it is easy to �nd 3-cores with no 3-connected subgraph. Extending

this, we have the following result.

Proposition 127. There exists a 2k-regular graph with no k + 1-connected subgraph.

Proof. Let S be a set of k independent vertices of Kk + Kk+1. Then the graph H =(
Kk +Kk+1

)
∪
S=S

(
Kk +Kk+1

)
has a set U of two vertices of degree k. Then H ∪

U=U
H

is 2k-regular with no k + 1-connected subgraph.

Conjecture 128. For k ≥ 3, every k-core contains a
⌈
k
2

⌉
-connected subgraph.

The smallest undecided case is k = 5.

2.2.8 Collapse and Lobe Graphs

We have seen that each k-monocore graph contains a k-collapsible graph. We now
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turn to the structure of collapsible subgraphs within monocore graphs.

We have seen that when a vertex is deleted from a k-monocore graph, some portion

of the resulting graph may not be in its k-core. This motivates our next de�nitions.

De�nition 129. Let G be a graph, H ⊆ G, F = G − H, v ∈ H. If G is a k-core

and Ck (G− v) = F , we say G collapses to F with the deletion of v. We also say H

collapses with the deletion of v. The analogous de�nitions apply for e ∈ H.

A k-lobe of a k-core G is a proper subgraph H ⊂ G such that for all v ∈ H,

Ck (G− v) = G−H. (We let H be induced by the edges deleted.)

The fact that some vertices can cause others to collapse suggests de�ning a relation.

De�nition 130. The one-step collapse relation cl1k (v, u) is de�ned as vRu if u and v

are vertices of a k-core G and u is deleted in one iteration of the k-core algorithm on

G− v. The r-step and (eventual) collapse relations are de�ned similarly.

The one-step collapse relation is easy to characterize.

Proposition 131. Let G be a k-core. Then cl1k (v, u) is true ⇐⇒ d (u) = k and uv ∈ G.

The most commonly studied properties of a relation are whether it is re�exive,

symmetric, and transitive.

Proposition 132. The r-step collapse relation is re�exive, but need not be symmetric

or transitive.

Proof. It is obvious that this relation is re�exive. Consider G = Kk+1 ∪
v
Kk+1. Then

clrk (v, u) is true, but clrk (u, v) is not. Thus the relation need not be symmetric.
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If u is deleted exactly r steps after the deletion of v, and w is deleted exactly r

steps after the deletion of u, w need not be deleted within r steps of v. If w is deleted

s steps from v, r < s ≤ 2r there exists some u such that transitivity fails.

We can guarantee transitivity in the r-step collapse relation by bounding the order

of the graph.

Proposition 133. If r ≥ n− k, then clrk is transitive for a k-core of order n.

Proof. At least one vertex must be deleted at each step or the algorithm terminates.

After n− k steps, at most k vertices remain and so are deleted.

Corollary 134. The eventual collapse relation is transitive.

Proof. If v causes u to be deleted eventually, and u does so for v, then v does so for w.

Any relation can be represented as a digraph.

De�nition 135. The (one-step) collapse digraph CL1 (G) of a graph G is de�ned by

the same vertex set and vu ∈ E (CL1 (G))⇐⇒ cl1k (v, u) is true. The n-step collapse

digraph and eventual collapse digraph CL (G) are de�ned similarly.

The one-step collapse digraph of G has a natural relationship with G.

Proposition 136. CL1 (G) is a subdigraph of G, with equality ⇐⇒ G is regular.
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Collapsible graphs have a natural relationship with the collapse digraph.

Proposition 137. G is collapsible ⇐⇒ CL1 (G) is strongly connected.

The action of the k-core algorithm can be described using the one-step collapse

relation.

Proposition 138. The nth power of the matrix of CL1 (G) tells whether u would be

deleted following the deletion of v after n steps, if not sooner.

Proof. The nth power of the adjacency matrix of a digraph counts the number of

(directed) walks from v to u. Thus if CL (G)nvu is positive, u will be deleted unless it

already has been.

We can describe the structure of the eventual collapse digraph.

Theorem 139. The eventual collapse digraph can be partitioned into maximal complete

subgraphs with either no edges between cliques or all possible edges having the same

direction.

Proof. Let u and v be vertices in the eventual collapse digraph of G and suppose that

each is eventually deleted following the deletion of the other. Then uv and vu are in

CL (G). Since CL (G) is transitive, u and v are contained in a maximal clique. Now

suppose cl (u, v) and cl (v, u) are false. Then uv and vu are not in CL (G) and xy is

not in CL (G) for all x and y in the same cliques and u and v, respectively.

Finally suppose that cl (v, u) is true and cl (u, v) is false. Then vu is in CL (G)

and uv is not in CL (G). By transitivity, for all x, y in the same cliques as u and v,

respectively, yx is in CL (G) and xy is not in CL (G).
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Figure 23: A 3-monocore graph G, where P represents the Petersen graph, and its lobe
graph.

Corollary 140. Every lobe of G generates a maximal clique in CL (G), with no edges

out of it.

Proof. The deletion of any vertex in a lobe collapses the lobe, and nothing else.

This suggests a simpler way of describing the structure of a monocore graph.

De�nition 141. The lobe graph Lobe (G) is the digraph whose vertices are the maximal

cliques of CL (G) and whose edges follow the directions of the edges between the

cliques of CL (G).

Figure 23 gives an example of a graph and its lobe graph.

We are interested in the structure of lobe graphs.

Proposition 142. Every lobe graph is acyclic.
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Proof. Suppose Lobe (G) had a directed cycle. Then the deletion of any vertex of any

clique corresponding to a vertex of the cycle would cause the collapse of every vertex

on the cycle. This would yield a single clique, not a cycle. This is a contradiction.

Proposition 143. Every vertex of Lobe (G) with outdegree 0 corresponds to a lobe of G

for a connected graph G.

Proof. Every lobe of G generates a clique of CL (G) with no outbound edges. Every

such vertex corresponds to a clique of CL (G). Thus every vertex causes the collapse

of the subgraph in G and nothing else, so it is a lobe.

We would like to characterize which digraphs can be lobe graphs, but this remains

an unsolved problem.
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3 Cores and Graph Operations

We can study the interactions between cores and graph operations such as the

Cartesian product, join, line graph, and complement.

3.1 Cartesian Products

Graph products o�er a way to combine existing graphs to form new graphs. They

have interesting interactions with k-cores. We consider the Cartesian product of two

or more graphs. The structure of the k-core of a Cartesian product has a simple

description.

Theorem 144. Let G and H be graphs. Then

Ck (G×H) = ∪
i+j=k

[Ci (G)× Cj (H)] .

Proof. Let v = (u,w) ∈ ∪
i+j=k

(Ci (G)× Cj (H)). Then there exist i, j with i + j = k

and v ∈ Ci (G)×Cj (H). Then u ∈ Ci (G) and w ∈ Cj (H). Then v is adjacent to at

least i+ j = k vertices vertices in Ci (G)×Cj (H). Since this holds for any vertex in

Ci (G)× Cj (H), v ∈ Ck (G×H). Thus ∪
i+j=k

(Ci (G)× Cj (H)) ⊆ Ck (G×H).

Let v = (u,w) ∈ Cl (G×H), l = C (v) ≥ k. Now there exists v′ = (u′, w′) ∈

Cl (G×H) with d (v′) = l, since otherwise the l-core is also the l + 1-core, and

C (v) ≥ l + 1. Denote the graph induced by the vertices of Cl (G×H) contained in

the same copy of G as v by G (l, v). Then there exist i, j with i+ j = l, d (u′) = i in

G (l, v′), and d (w′) = j inH (l, v′). Let x ∈ G (l, v′). Then d (x) ≥ l−j = i in G (l, v′).

Thus x ∈ Ci (G), so u′ ∈ Ci (G). Similarly, w′ ∈ Cj (H). Thus v′ ∈ Ci (G)× Cj (H).

If v ∈ Ci (G)×Cj (H), we are almost done. Suppose not. WLOG, say u /∈ Ci (G).

Then there exists t > 0 such that u is adjacent to i−t vertices in Ci (G). Thus Ci−t (G).

Then v is adjacent to at least j + t vertices in H (l, v). The same is true for any x in
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Figure 24: Cores of a Cartesian product.

H (l, v). Thus w ∈ Cj+t (H). Thus v ∈ Ci−t (G)×Cj+t (H) ⊆ Cr (G)×Cs (H) for some

r, s with r + s = k, i− t ≥ r, j + t ≥ s. Thus Ck (G×H) ⊆ ∪
i+j=k

(Ci (G)× Cj (H)).

Thus Ck (G×H) = ∪
i+j=k

(Ci (G)× Cj (H)).

Consider the following example shown in Figure 24. Take two graphs G and H

and put all their vertices on one line each, one horizontal and one vertical. Arrange

the vertices by core number. Then their product will have the form shown in the

�gure below, where the vertices of the Cartesian product graph contained in each box

have the core number that appears in the box. So as the theorem states, the 2-core

of the product is (C0 (G)× C2 (H)) ∪ (C1 (G)× C1 (H)) ∪ (C2 (G)× C0 (H)).

The proof of this theorem is unexpectedly long. This theorem can be generalized

to more than two factors.
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Corollary 145. Let Gi be graphs, 1 ≤ i ≤ n. Then

Ck (G1 × . . .×Gn) = ∪∑
ir=k

[Ci1 (G1)× . . .× Cin (Gn)] .

Proof. The result is obvious for n = 1 and has been proven for n = 2. Assume the

result holds for n = p. Then

Ck (G1 × . . .×Gp+1) = Ck ((G1 ×Gp)×Gp+1)

= ∪
i+j=k

[Ci (G1 × . . .×Gp)× Cj (Gp+1)]

= ∪
i+j=k

[
∪∑
ir=i

[
Ci1 (G1)× . . .× Cip (Gp)

]
× Cj (Gp+1)

]
= ∪∑

ir=k

[
Ci1 (G1)× . . .× Cip+1 (Gp+1)

]
.

Thus the result holds for all n.

Theorem 144 implies a simple formula for the core number of a vertex of a Cartesian

product.

Corollary 146. Let v = (u,w) ∈ G×H. Then C (v) = C (u) + C (w).

Proof. Let v = (u,w) ∈ G ×H with C (v) = k. Then there exist i, j with i + j = k,

so that v ∈ Ci (G) × Cj (H). Now u /∈ Ci+1 (G) and w /∈ Cj+1 (H) since otherwise v

would be in Ck+1 (G×H). Thus C (u) = i and C (w) = j, so C (v) = C (u) + C (w).

This result can be generalized to more dimensions.

Corollary 147. Let v = (v1, . . . , vn) ∈ G1 × . . .×Gn. Then C (v) =
∑n

i=1C (vi).
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Proof. The result holds for n = 1. Assume the result holds for r dimensions, and let

v = (v1, . . . , vr+1) ∈ G1 × . . .×Gr+1. Then

C (v) = C ((v1, . . . , vr)) + C (vr+1) =
r∑
i=1

C (vi) + C (vr+1) =
r+1∑
i=1

C (vi) .

These results have an immediate corollary on the maximum core numbers.

Corollary 148. Let v = (v1, . . . , vn) ∈ G1 × . . . × Gn. Then Ĉ (v) =
∑n

i=1 Ĉ (vi). In

particular, for n = 2, Ĉ (v) = Ĉ (v1) + Ĉ (v2).

Proof. It is purely a set theory result that Ĉ (v) ≤
∑n

i=1 Ĉ (vi). Let ki = Ĉ (Gi), and

vi ∈ Cki
(Gi) for all i, 1 ≤ i ≤ n. Then v = (v1, . . . , vn) has maximum core number∑n

i=1 Ĉ (vi), so the upper bound is achieved. The latter statement is simply a special

case of the former.

Using Corollary 146, we can characterize Cartesian products that are monocore.

Corollary 149. G×H is monocore ⇐⇒ G and H are both monocore. Further, if G is

k-monocore and H is l-monocore, then G×H is k + l-monocore.

Proof. If G is k-monocore and H is l-monocore, then every vertex in G×H has core

number k + l, so G×H is k + l-monocore.

Suppose without loss of generality that G is not monocore. Let u1, u2 ∈ G,

w ∈ H, v1 = (u1, w), v2 = (u2, w), C (u1) = k1 6= k2 = C (u2), C (w) = l. Then

C (v1) = k1 + l 6= k2 + l = C (v2), so G×H is not monocore.
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This can be extended to higher dimensions immediately by induction.

Corollary 150. G1× . . .×Gn is monocore ⇐⇒ Every factor Gi is monocore. Further,

if Gi is ki-monocore for all i, then G1 × . . .×Gn is (
∑
ki)-monocore.

We can similarly characterize the structure of the proper k-shell of a Cartesian

product in terms of the k-shells of its factors.

Theorem 151. Let G and H be graphs. Then

S ′k (G×H) = ∪
i+j=k

[
S ′i (G)× S ′j (H)

]
.

Proof. Let v = (u,w) ∈ ∪
i+j=k

(
S ′i (G)× S ′j (H)

)
. Then there exist i, j with i + j = k

and v ∈ S ′i (G) × S ′j (H). Then u ∈ S ′i (G) and w ∈ S ′j (H). Then C (u) = i and

C (w) = j. Then C (v) = C (u) + C (w) = i + j = k, so v ∈ S ′k (G×H). Thus

∪
i+j=k

(
S ′i (G)× S ′j (H)

)
⊆ S ′k (G×H).

Let v = (u,w) ∈ S ′k (G×H). Then C (v) = k, so C (v) = C (u) + C (w). Then

there exist nonnegative integers i, j such that C (u) = i and C (w) = j, and i+ j = k.

Thus u ∈ S ′i (G) and w ∈ S ′j (H). Thus v ∈ S ′i (G) × S ′j (H), so S ′k (G×H) ⊆

∪
i+j=k

(
S ′i (G)× S ′j (H)

)
.

Thus

S ′k (G×H) = ∪
i+j=k

[
S ′i (G)× S ′j (H)

]
.

This can be generalized to higher dimensions.
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Corollary 152. Let Gi be graphs, 1 ≤ i ≤ n. Then

S ′k (G1 × . . .×Gn) = ∪∑
ir=k

[
S ′i1 (G1)× . . .× S ′in (Gn)

]
.

The proof is essentially the same as for the corresponding result on cores.

It is straightforward to verify the following description of the k-boundary of a

Cartesian product.

Corollary 153. Let G and H be graphs. Then

Bk (G×H) = ∪
i+j=k

[S ′i (G)×Bj (H)] ∪ ∪
i+j=k

[
Bi (G)× S ′j (H)

]
.

The k-shell of a Cartesian product is induced by the edges of the proper k-shell

and the edges between vertices in the proper k-shell and the k-boundary. It does not

seem to have as convenient a description as the proper k-shell.

We can describe collapsible Cartesian products.

Theorem 154. G × H is collapsible ⇐⇒ G and H are both collapsible and G or H

is regular. Further, if G is k-collapsible and H is l-collapsible, then G×H is k + l-

collapsible.

Proof. (⇒) WLOG, let G be k-monocore and not collapsible, and H be l-monocore.

Then G contains a proper subgraph G′ with δ (G′) = k. Then G′ ×H ⊂ G×H and

δ (G′ ×H) = k + l. Thus G×H is not collapsible.

Now let G and H be nonregular. Then there exists u ∈ G, w ∈ H so that d (u) > k

and d (w) > l. Let v = (u,w) ∈ G × H. Now if v′ = (u′, w′) is adjacent to v, then
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u = u′ or w = w′. Then d (v′) > k + l. Thus δ (G×H − v) ≥ k + l, so G×H is not

collapsible.

(⇐) Let G, H be collapsible and WLOG, G be regular. Let v = (v1, v2) ∈

G × H. Then v is adjacent to u = (v1, u2), d (u2) = l = δ (H). Then u is not in

Ck+l (G×H − v). Then neither are (x, u2) for all x in G. Then neither are (x, y) for

all x in G and y in H. Thus G×H − v has no k + l-core, so G×H is collapsible.

The �nal statement follows immediately from the minimum degrees.

Corollary 155. G1 × ... × Gn is collapsible ⇐⇒ All graphs Gi are collapsible and at

most one Gi is nonregular.

We have the following corollary on core-critical products.

Corollary 156. G × H is core-critical ⇐⇒ G and H are both core-critical and G or

H is regular.

Proof. (⇒) If both graphs are nonregular, then G × H is not collapsible. If one of

them is monocore and not core-critical, then it has an edge that joins vertices of more

than minimum degree. Hence so does G×H, so it is not core-critical.

(⇐) If these conditions hold, then G×H is monocore and has no adjacent vertices

with larger than minimum degree, so it is core-critical.

An area for future research is the structure of cores of other products such as the

tensor product, lexicographic product, and o�spring product.
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3.2 Graph Joins

We now describe the k-core of the join of two graphs.

Theorem 157. Let G and H be graphs. Then

Ck (G+H) = min
i,j
{Ci (G) + Cj (H) | i+ |Cj (H)| ≥ k and j + |Ci (G)| ≥ k}

where the minimum is unique over both i and j.

Proof. Let property P (i, j) be that i + |Cj (H)| ≥ k and j + |Ci (G)| ≥ k, and let

Ci (G) + Cj (H) satisfy P (i, j). Let i′ ≤ i, j′ ≤ j, and P (i′, j) and P (i, j′) be

true. Then P (i′, j′) is also true since i′ + |Cj (H)| ≥ k and Cj (H) ⊆ Cj′ (H) imply

i′+ |Cj′ (H)| ≥ k, and similarly for the other case. Thus the minimum is well-de�ned.

Let v ∈ Ci (G) + Cj (H), P (i, j) true for i, j minimum. If v ∈ G, then d (v) ≥

i + |Cj (H)| ≥ k, and if v ∈ H, d (v) ≥ j + |Ci (G)| ≥ k. Thus v ∈ Ck (G+H), so

Ci (G) + Cj (H) ⊆ Ck (G+H).

Let G′ = G∩Ck (G+H) and H ′ = H ∩Ck (G+H). Then Ck (G+H) = G′+H ′.

Let δ (G′) = i and δ (H ′) = j. Then G′ ⊆ Ci (G) and H ′ ⊆ Ci (H). If v ∈ G′, then

i+ |H ′| ≥ k and if v ∈ H ′, then j+ |G′| ≥ k. Now |Ci (G)| ≥ |G′| and |Cj (H)| ≥ |H ′|,

so P (i, j) is true. Thus Ck (G+H) ⊆ Ci (G) +Cj (H) ⊆ Ci′ (G) +Cj′ (H), where i′,

j′ are the guaranteed minimums.

Thus Ck (G+H) = min
i,j
{Ci (G) + Cj (H) |P (i, j)}.

Consider the following example, shown in Figure 25. Let G be the graph on the

left and H be on the right. Both C2 (G) + C2 (H) and C3 (G) + C2 (H) are 6-cores,

but C2 (G) + C2 (H) is the 6-core of G+H, as guaranteed in the theorem.
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Figure 25: The cores of a join of two graphs. (Not all edges are shown.)

This can be generalized to more than two graphs.

Corollary 158. Let Gj, 1 ≤ j ≤ n be graphs. Then

Ck (G1 + ...+Gn) = min
i1,...,in

{
Ci1 (G1) + ...+ Cin (Gn) | i+

n∑
j=1,j 6=i

∣∣Cij (Gj)
∣∣ ≥ k ∀i

}
.

We have the following corollary for the the maximum core number.

Corollary 159. We have Ĉ (G+H) = max
i,j

min (i+ |Cj (H)| , j + |Ci (G)|).

The following examples follow from the previous theorem. We have Ck (G+ v) =

Ck−1 (G) + v. More generally, Ck (G+Kn) = Ck−n (G) + Kn, and Ck
(
G+Kn

)
=

Ck−n (G) + Kn provided |Ck−n (G)| ≥ k. This implies that given a ≤ b, Ka,b is a-

monocore, justifying our earlier assertion in the �rst section. Similarly, given a1 ≤

... ≤ an, Ka1,...,an is (a1 + ...+ an−1)-monocore. Also, the wheel Wn is 3-monocore.

We have the following for proper k-shells.
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Corollary 160. Let ik and jk be the minimums for the k-core of G+H guaranteed by

the previous theorem. Then

S ′k (G+H) =
(
Cik+1

(G)− Cik (G)
)

+
(
Cjk+1

(H)− Cjk (H)
)
.

No complete characterization of monocore joins is known. It is immediate that

the join of two monocore graphs is monocore, but the converse is false. For example,

(K2 ∪K1) + (K2 ∪K1) is 3-monocore without either factor being monocore.

For monocore collapsible graphs, we have the following partial results.

De�nition 161. The score of G in G + H is δ (G) + n (H). G has minimum score in

G+H if score (G) ≤ score (H).

Theorem 162. Let score (G) = k, score (H) = l ≥ k. If every component of G is

k-collapsible with order at least l − k + 1, then G+H is collapsible.

Proof. Assume the hypothesis. Deletion of any vertex in the copy of G in G + H

collapses a component with order at least l − k + 1. This makes some vertex in the

copy of H in G+H have degree less than k, so it also collapses. Its deletion causes a

vertex in each component of G to have degree less than k, so all of G collapses, and

so does all of H. Starting with a vertex in the copy of H similarly collapses G+H.

Note that order l−k+1 is best possible in this result since 6K1+3K2 is 6-monocore

but not 6-collapsible.

Corollary 163. If G has minimum score in G+H and G is collapsible, then G+H is

collapsible.
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Proof. We have l− k = (δ (H) + n (G))− (δ (G) + n (H)) ≤ n (G)− δ (G)− 1 ≤ n− 1,

so the result follows immediately from the theorem.

Proposition 164. If G and H are monocore with equal score, then G+H is collapsible.

Proof. G + H is collapsible unless it has a proper subgraph with both factors having

the same scores as the whole graph. But at least one of its components must have

fewer vertices, and the other has no larger core to compensate for this.

We have a good characterization for core-critical joins.

Theorem 165. Given G + H, let score (G) ≥ score (H) = k and r = score (G) −

score (H). Then G+H is k-core-critical if and only if either

1. G and H have the same score k, one of them is regular, and the other has no

adjacent vertices of more than minimum degree

2. r > 0, G is empty and each component of H is j-regular for some j and the

order of the smallest component of H is more than r.

Proof. (⇐) It is straightforward to verify that in both cases, the graphs described are

k-core-critical.

(⇒) If G + H is k-core-critical, then at least one of G or H is regular. If G and

H have the same score, then certainly if H is nonregular, it has no adjacent vertices

of more than minimum degree. Now if G has larger score than H, G has no adjacent

vertices, so it is empty. Then H must be regular, and each component must be large

enough so that if it is deleted, the score of G becomes less than k.
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3.3 Edge Cores

One well-known graph operation is forming the line graph of a graph. The line

graph L (G) of a nonempty graph G has vertices that correspond to the edges of

G, with vertices of L (G) adjacent when the corresponding edges of G are adjacent.

There are many corresponding properties of graphs for vertices and edges. These

can often be related via line graphs. For example, an independent set of edges of G

corresponds to an independent set of vertices of L (G). For background on line graphs

see [West [60] p. 279-286]

While the cores studied in this dissertation are de�ned in terms of minimum degree,

analogous concepts can be de�ned in terms of other graph parameters. In particular,

in light of what we know about line graphs, the following de�nition is natural.

De�nition 166. The k-edge-core of G, ECk (G), is the maximal edge-induced subgraph

H of G such that each edge of H is adjacent to at least k edges of H.

It is easily checked that, analogous with k-cores, the k-edge-core is well-de�ned

and the k-edge-cores are nested. As expected, k-edge-cores are connected with line

graphs.

Theorem 167. We have Ck (L (G)) = L (ECk (G)).

Proof. We have ECk (G) ⊆ G, so L (ECk (G)) ⊆ L (G). Each edge in ECk (G) is

adjacent to at least k edges, so δ (L (ECk (G))) ≥ k, so L (ECk (G)) ⊆ Ck (L (G)).

Let v ∈ Ck (L (G)). Then dL(G) (v) ≥ k, and v corresponds to an edge e of G,

which is adjacent to at least k edges also corresponding to vertices of Ck (L (G)).

This is true for all v ∈ Ck (L (G)), so e ∈ ECk (G). Thus v ∈ L (ECk (G)). Thus

Ck (L (G)) ⊆ L (ECk (G)).
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Figure 26: A graph G, EC2 (G), L (G), and C2 (L (G)) = L (EC2 (G)).

Figure 26 illustrates the theorem.

We can describe the edge cores for small k. Clearly C0 (L (G)) = L (G). The only

way to get an isolated vertex in a line graph is from a component that is K2, so this

corollary follows immediately from the theorem.

Corollary 168. Let H be the graph formed from G by deleting any component that is

K2. Then C1 (L (G)) = L (H).

The next corollary is similar.

Corollary 169. Let H be the graph formed from G by iteratively deleting each vertex

of degree 1 adjacent to a vertex of degree 1 or 2 in G. Then C2 (L (G)) = L (H).

Proof. The only way an end-vertex can occur in L (G) is if G has an edge incident with

exactly one edge, and hence an end-vertex adjacent to a vertex of degree 2. Hence H

is exactly the 2-edge-core of G. By the previous theorem, the result follows.
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We now de�ne an analogous concept to the core number.

De�nition 170. The edge core number of a vertex, EC (v), is the largest value for k

such that v ∈ ECk(G). The maximum edge core number of a graph, ÊC(G), is the

maximum of the edge core numbers of the vertices of G.

We have the following corollary to the initial theorem.

Corollary 171. We have Ĉ (L (G)) = ÊC (G).

We will �nd the following result useful.

Theorem 172. [50] For a connected graph G, L (G) is regular if and only if G is regular

or G is bipartite with vertices of the same partite set having the same degrees.

We can provide bounds for Ĉ (L (G)) in terms of 4 (G).

Theorem 173. Let 4 = 4 (G). Then 4− 1 ≤ Ĉ (L (G)) ≤ 2 (4− 1), and the latter

is an equality for connected graphs if and only if G is regular.

Proof. Let v have degree 4. Then L (G) contains K4, so it has a 4− 1-core.

For the upper bound, we have Ĉ (L (G)) ≤ 4 (L (G)) ≤ 2 (4− 1) since an edge

of G is adjacent to at most 4 − 1 edges on each side. By Proposition 5, The �rst

inequality in this chain is an equality exactly when L (G) is regular, which occurs

exactly when G is regular or G is bipartite with vertices of the same partite set

having the same degrees. The second inequality is an equality exactly when G has
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two adjacent vertices of maximum degree, which is true for nonempty regular graphs,

but false for the latter class of graphs.

The lower bound is sharp, being exact for trees, but it is unclear what all the

extremal graphs are.

The operation of forming a line graph can be applied repeatedly. The iterated

line graph Lk (G) is de�ned recursively by L0 (G) = G, Lk (G) = L
(
Lk−1 (G)

)
. We

consider the maximum core number for iterated line graphs.

For regular graphs, we have the following recursion. Denote 4k = 4
(
Lk (G)

)
.

Then 40 = 4 and 4k = 24k−1 − 2. This immediately yields 4k+1 = 24k − 2,

and subtracting the former from the latter, we �nd 4k+1 = 34k − 24k−1. This

recurrence relation must have a solution of the form 4k = rk. Substituting, we �nd

rk+1 = 3rk−2rk−1, so r2−3r+2 = 0, which has roots 1 and 2. The general solution to

the recurrence relation must have the form 4k = C ·2k+D ·1k. The initial conditions

imply 4 = C +D and 24− 2 = 2C +D, so C = 4− 2 and D = 2.

Corollary 174. We have
(4−3

2

)
2k + 2 ≤ Ĉ

(
Lk (G)

)
≤ (4− 2) 2k + 2, k ≥ 1, with

equality for the upper bound over connected graphs exactly for regular graphs.

Proof. The formula for the upper bound is derived in the previous discussion and

can easily be veri�ed by induction. The extremal graphs follow from the previous

theorem. For the lower bound, we have 41 ≥ 4− 1 and 42 ≥ 24− 4, with equality

for stars. Solving for the coe�cients in this case, we have 4 − 1 = 2C + D and

24− 4 = 4C +D, so C = 4−3
2

and D = 2.

It is unclear what are the extremal graphs for the lower bound. It is also unknown

whether all values in the range may be obtained.
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We can examine the relationships between cores and edge cores.

Proposition 175. We have Ck (G) ⊆ EC2k−2 (G).

Proof. Every edge of the k-core is adjacent to at least k − 1 other edges on each end.

This is an equality for regular graphs, but the complete list of extremal graphs is

unknown.

Corollary 176. We have Ĉ (L (G)) ≥ 2Ĉ (G)− 2.

For example, we have Ĉ (L (Km,n)) = m+n−2. Perhaps equality always eventually

holds.

Conjecture 177. For each graph G, there existsK such that for all k ≥ K, Ĉ
(
Lk+1 (G)

)
=

2 · Ĉ
(
Lk (G)

)
− 2.

We now examine analogues for monocore and collapsible graphs.

De�nition 178. Let the edge degree of e, ed (e), be the number of edges adjacent to

edge e in G. Let eδ (G) = mine∈G ed (e).

G is k-edge-monocore if eδ (G) = ÊC (G).

G is k-edge-collapsible if it is k-edge-monocore and has no proper k-edge-monocore

subgraph.

Proposition 179. G is 0-edge-collapsible if and only if G = K2.

G is 1-edge-collapsible if and only if G = P3.
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G is 2-edge-collapsible if and only if G = K1,3 or Cn.

Proof. The �rst two are obvious. K1,3 and Cn are certainly both 2-edge-collapsible. If

G is 2-edge-collapsible, then either it has a vertex of degree 3, and so contains K1,3,

or every vertex has degree 2, so it contains a cycle.

Proposition 180. G is 0-edge-monocore if and only if every component of G is K2.

G is 1-edge-monocore if and only if every component of G is a path of length at

least two.

We can characterize edge-monocore trees.

Proposition 181. A tree T is k-edge-monocore if and only if 4 (T ) = k + 1 and if

e = uv ∈ T with i = d (u), 1 ≤ i ≤ k, then k − i + 1 ≤ d (v) ≤ k + 1. (Hence every

vertex adjacent to an end-vertex has degree k + 1.)

Proof. Every block of L (T ) is a clique. For L (T ) to be k-monocore, every end-block

of L (T ) must be a k-clique, and L (T ) has no k + 1-clique, so 4 (T ) = k + 1. For

e = uv, ed (e) ≥ k ⇐⇒ d (u) + d (v) ≥ k + 2. The converse is easy.

Corollary 182. A tree T is k-edge-collapsible if and only if T = K1,k+1.

We can characterize 3-edge-collapsible graphs.

Proposition 183. A graph G is 3-edge-collapsible if and only if G = K1,4 or G is

connected with the property that 4 (G) = 3, δ (G) = 2, and G has no adjacent

vertices of degree 2, and has no proper subgraph with this property.
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Proof. The graphs in question are clearly 3-edge-collapsible. If G is 3-edge-collapsible

with a vertex of degree more than 3, it contains K1,4, and hence is K1,4. Now any

adjacent vertices must have degrees sum to at least 5 and some pair must sum to

exactly 5, so 4 (G) = 3, δ (G) = 2, and G has no adjacent vertices of degree 2. If G

had a proper subgraph with this property, it would not be 3-edge-collapsible.
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3.4 Ramsey Core Numbers

The problem of Ramsey numbers is one of the major problems of extremal graph

theory. Given positive integers t1, t2, . . . , tk, the classical Ramsey number r (t1, . . . , tk)

is the smallest integer n such that for any decomposition of Kn into k factors, for

some i, the ith factor has a ti-clique. This problem can be modi�ed to require the

existence of other classes of graphs. Since classical Ramsey numbers are de�ned,

which is not trivial to show, such modi�cations are also de�ned, since every �nite

graph is a subgraph of some clique. When considering cores, the following modi�ed

problem arises naturally.

De�nition 184. Given nonnegative integers t1, t2, . . . , tk, the Ramsey core number

rc (t1, t2, . . . , tk) is the smallest n such that for all edge colorings of Kn with k colors,

there exists an index i such that the subgraph induced by the ith color, Hi, has a

ti-core.

Several basic results can be obtained immediately.

Proposition 185. 1. rc (t1, t2, . . . , tk) ≤ r (t1 + 1, . . . , tk + 1), the classical multidimen-

sional Ramsey number.

2. For any permutation σ of [k], rc (t1, t2, . . . , tk) = rc
(
tσ(1), tσ(2), . . . , tσ(k)

)
. Thus

we need only consider nondecreasing orderings of the numbers.

3. rc (0, t2, . . . , tk) = 1

4. rc (1, t2, . . . , tk) = rc (t2, . . . , tk).

We can easily determine some classes of multidimensional Ramsey core numbers.

Proposition 186. For k dimensions, rc (2, 2, . . . , 2) = 2k + 1.
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Proof. It is well known that the complete graph K2k can be decomposed into k span-

ning paths, each of which has no 2-core. Thus rc (2, 2, . . . , 2) ≥ 2k + 1. K2k+1 has

size
(

2k+1
2

)
= k (2k + 1), so if it decomposes into k graphs, one of them has at least

2k + 1 edges, and hence contains a cycle. Thus rc (2, 2, . . . , 2) = 2k + 1.

The technique of this proof suggests a general upper bound for Ramsey core num-

bers.

De�nition 187. The multidimensional upper bound for the Ramsey core number

rc (t1, t2, . . . , tk) is the function B (t1, t2, . . . , tk), where T =
∑
ti and

B (t1, . . . , tk) =

⌈
1

2
− k + T +

√
T 2 −

∑
t2i + (2− 2k)T + k2 − k +

9

4

⌉
.

With a de�nition like that, this had better actually be an upper bound.

Theorem 188. [The Upper Bound] rc (t1, t2, . . . , tk) ≤ B (t1, . . . , tk).

Proof. The size of a maximal k-core-free graph of order n is (k − 1)n −
(
k
2

)
. Now by

the Pigeonhole Principle, some Hi has a ti-core when

(
n

2

)
≥

k∑
i=1

(
(ti − 1)n−

(
ti
2

))
+ 1.

This leads to

n2 − n ≥ 2n
k∑
i=1

(ti − 1)−
k∑
i=1

(
t2i − ti

)
+ 2.
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Thus we obtain a quadratic inequality n2 − bn + c ≥ 0 with b = 1 + 2
∑
ti − 2k

and c =
∑

(t2i − ti)− 2. By the quadratic formula,

n ≥ 1

2

(
b+
√
b2 − 4c

)
and

b2 − 4c =
(
1 + 4T − 4k + 4T 2 − 8kT + 4k2

)
−
(

4
∑

t2i − 4T − 8
)

= 4

(
T 2 −

∑
t2i + (2− 2k)T + k2 − k +

9

4

)
Thus

n ≥

⌈
1

2
− k + T +

√
T 2 −

∑
t2i + (2− 2k)T + k2 − k +

9

4

⌉
= B (t1, . . . , tk) .

Now rc (t1, . . . , tk) ≤ min {n |n ≥ B (t1, . . . , tk)} = B (t1, . . . , tk).

Thus to show that a Ramsey core number achieves the upper bound, we must �nd

a decomposition of the complete graph of order B (t1, . . . , tk) − 1 for which none of

the factors contain the stated cores. For example, the decomposition in Figure 27

shows that rc (3, 3) = 8.

When �rst studying this problem in late 2008 I made the following conjecture,

initially restricted to two dimensions.

Conjecture 189. The upper bound is exact. That is, rc (t1, t2, . . . , tk) = B (t1, . . . , tk).
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Figure 27: A decomposition that shows that rc (3, 3) = 8.

To prove this, we state the following theorem due to R. Klien and J. Schonheim

from 1992 [37], which I became aware of in summer 2010.

Theorem 190. Any complete graph with order n < B (t1, . . . , tk) has a decomposition

into k subgraphs with degeneracies at most t1 − 1, ... , tk − 1.

The proof of this theorem is long and di�cult. It uses a complicated algorithm to

construct a decomposition of a complete graph with order satisfying the inequality into

k subgraphs given a decomposition of a smaller complete graph into k− 1 subgraphs

without the �rst k − 1 cores, a copy of Ktk , and some extra vertices. Thus the proof

that the algorithm works uses induction on the number of subgraphs.

Using this theorem, proving the conjecture is not hard.

Theorem 191. We have rc (t1, t2, . . . , tk) = B (t1, . . . , tk).

Proof. We know that B (t1, . . . , tk) is an upper bound. By the previous theorem, there

exists a decomposition of the complete graph of order B (t1, . . . , tk) − 1 such that

subgraph Hi has degeneracy ti−1, and hence has no ti-core. Thus rc (t1, t2, . . . , tk) >

B (t1, . . . , tk)− 1, so rc (t1, t2, . . . , tk) = B (t1, . . . , tk).
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Since the exact answer depends on a complicated construction, some simpler con-

structions remain of interest.

Proposition 192. [The Lower Bound] We have rc (t1 + 1, t2, . . . , tk) ≥ rc (t1, . . . , tk)+1.

Proof. Let n = rc (t1 + 1, t2, . . . , tk). Then there exists a decomposition of Kn−1 with

each factor having no ti-core for all i. Let H = G + v. Consider the decomposition

of Kn formed from the previous decomposition by joining a vertex to the �rst factor.

Then the �rst factor has no t1 +1-core. Thus rc (t1 + 1, t2, . . . , tk) ≥ rc (t1, . . . , tk)+1.

The next corollary follows easily.

Corollary 193. Let ti ≥ 2 for all i, and T =
∑
ti. Then rc (t1, t2, . . . , tk) ≥ T + 1.

Proof. We have rc (2, 2, . . . , 2) = 2k + 1. The result follows by induction on the lower

bound.

Along with the upper bound, this implies that for k dimensions, rc (2, 2, . . . , 2, 3) =

2k + 2.

There is one more lower bound to consider. This one varies the number of dimen-

sions.

Lemma 194. Let T =
∑
ti, with ti ≥ 2 and X = rc (t1, t2, . . . , tk). Then 2 (T − k) ≥

X − 1.

Proof. We have
∑
t2i ≥ T + 2. We have the following implications.

T 2 − 2Tk + T + k2 − k +
1

4
≥ T 2 −

∑
t2i + 2T − 2Tk + k2 − k +

9

4
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T − k +
1

2
≥
√
T 2 −

∑
t2i + (2− 2k)T + k2 − k +

9

4

2 (T − k) ≥ B (ti, . . . , tk)− 1 ≥ X − 1.

Theorem 195. We have rc (2, t1, t2, . . . , tk) ≥ 2 + rc (t1, . . . , tk).

Proof. Let X = rc (t1, t2, . . . , tk). Then there exists an edge coloring of KX−1 so that

for all i, Hi has no ti-core. Add two vertices u, v to this graph. Each subgraph

Hi can be extended by ti − 1 edges to each new vertex. Together, they contribute∑
(ti − 1) = T − k edges. Now by the previous lemma, 2 (T − k) ≥ X − 1, so the

remaining edges form a tree. This gives an edge-coloring of Kk+1, with none of the

given cores, so rc (2, t1, t2, . . . , tk) ≥ 2 +X.

Corollary 196. For k dimensions and t ≥ 3,

2 (k − 2) +

⌈
t+

1

2
+

√
2t+

1

4

⌉
≤ rc (2, 2, ..., 2, t) ≤ 2k + 2t− 4.

Proof. The formula for B (2, t) and the theorem imply the lower bound. Setting t =

2 + r gives T = 2k+ t, and
∑
t2i = 4k+ r2 + 2r. Plugging this into the upper bound,

we �nd rc (2, 2, . . . , 2, 2 + r) ≤ k+r+ 1
2
+
√(

k +
(
r − 1

2

))2
+ (−r2 + r + 2) ≤ 2k+2r.

The upper bound in the proof is slightly better when t is large relative to k.

This corollary implies that rc (2, 2, . . . , 2, 4) = 2k + 4. We can similarly show that

rc (2, 2, . . . , 2, 3, 3) = 2k + 4 (k dimensions).

For two dimensions, the upper bound simpli�es to where
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B (s, t) =

⌈
s+ t− 3

2
+

√
2 (s− 1) (t− 1) +

9

4

⌉
.

The formula for rc (2, t) can be expressed in another form, and proven using a

simple construction.

Theorem 197. Let t =
(
r
2

)
+ q, 1 ≤ q ≤ r. Then rc (2, t) =

(
r
2

)
+ r+ q+ 1 = t+ r+ 1 =

B (2, t) .

Proof. We �rst show that the Upper Bound for rc (2, t) can be expressed as a piecewise

linear function with each piece having slope one and breaks at the triangular numbers.

Let t =
(
r
2

)
. Let

B′ (s, t) = s+ t− 3

2
+

√
2 (s− 1) (t− 1) +

9

4
.

Then B (s, t) = dB′ (s, t)e. Now

B′ (2, t) = 2+t−3

2
+

√
2 · 1 (t− 1) +

9

4
= t+

1

2
+

√
2
r (r − 1)

2
+

1

4
= t+

1

2
+

√(
r − 1

2

)2

= t+ r, which is an integer. Now B′ (2, t+ 1) > t+ r+ 1, so B (2, t+ 1) ≥ t+ r+ 2.

Then B (2, t+ q) ≥ t+ r + 1 + q for q ≥ 1 by the Lower Bound. Now B′ (2, t+ r) =

B′
(
2,
(
r+1

2

))
= t+r+r+1, an integer. Thus B (2, t+ r) = t+r+r+1, so B (2, t+ q) ≤

t + r + 1 + q for 1 ≤ q ≤ r by the Lower Bound. Thus B (2, t+ q) = t + r + 1 + q,

1 ≤ q ≤ r, so rc (2, t) ≤ t+ r + 1 for t =
(
r
2

)
+ q.

We next show that the upper bound is attained with an explicit construction. Let

T be a caterpillar whose spine with length r is

r − r − (r − 1)− (r − 2)− . . .− 4− 3− 2,
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s\t 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12

2 3 5 6 8 9 10 12 13 14 15 17

3 4 6 8 10 11 13 14 15 17 18 19

4 5 8 10 11 13 15 16 18 19 20 22

5 6 9 11 13 15 16 18 20 21 23 24

6 7 10 13 15 16 18 20 21 23 25 26

7 8 12 14 16 18 20 22 23 25 26 28

Table 5: Values of some 2-dimensional Ramsey core numbers.

where a number is the degree of a vertex and end-vertices are not shown. Now T has

[(r − 1) + (r − 2) + (r − 3) + . . .+ 2 + 1] + 1 =

(
r

2

)
+ 1

end-vertices, so it has order n =
(
r
2

)
+ r+ 1. The degrees of corresponding vertices in

T and T must add up to n− 1 =
(
r
2

)
+ r. Then the degrees of corresponding vertices

in T are

(
r

2

)
,

(
r

2

)
,

(
r

2

)
+ 1,

(
r

2

)
+ 2, . . . ,

(
r

2

)
+ r − 3,

(
r

2

)
+ r − 2.

Take the
((
r
2

)
+ 1
)
-core of T . The �rst two vertices will be deleted by the k-core

algorithm. The pth vertex will be deleted because it has degree
(
r
2

)
+ p − 2 and is

adjacent to the �rst p − 2 vertices, which were already deleted. Thus all the spine

vertices will be deleted, leaving
(
r
2

)
+ 1 vertices, which must also be deleted. Thus T

has no
((
r
2

)
+ 1
)
-core, and T has no 2-core. Thus rc

(
2,
(
r
2

)
+ 1
)
≥
(
r
2

)
+ r + 1 + 1.

Thus rc
(
2,
(
r
2

)
+ q
)
≥
(
r
2

)
+ r + 1 + q by the Lower Bound.

Thus rc (2, t) = t+ r + 1 for t =
(
r
2

)
+ q, 1 ≤ q ≤ r.
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4 Applications of Cores in Graph Theory

4.1 Proper Vertex Coloring

Vertex coloring is perhaps the most popular topic in graph theory. Cores have natural

applications to vertex coloring problems. The chromatic number of a graph, χ (G), is

the smallest number of subsets into which the vertices of a graph can be partitioned

so that no two vertices in the same subset are adjacent. See the following book for

background on graph coloring.

Chromatic Graph Theory by Chartrand and Zhang [16]

Determining the chromatic number when it is larger than two is an NP-complete

problem, meaning that it is di�cult to e�ciently determine in general. Because of this,

a major issue in chromatic graph theory is to determine upper and lower bounds for

the chromatic number in terms of graph parameters that can be calculated e�ciently.

If the bounds are good, they may be equal for a graph in question, solving the problem

in that case.

Many, but not all upper bounds for χ (G) are based on algorithms for coloring

graphs. The most naive coloring scheme simply puts the vertices in any order and

assigns the least available color to a vertex that has not already been used on its

neighbor. This leads to the upper bound χ (G) ≤ 1 + 4 (G). This is not a very

good upper bound, as it is easy to construct graphs that have maximum degree much

larger than their chromatic number.

4.1.1 The Core Number Bound

Using cores, we can prove a better upper bound. We can establish a deletion sequence

for a graph by successively deleting vertices of smallest degree. This orders the vertices

in terms of core number. Reverse this sequence to obtain a construction sequence for
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Figure 28: Coloring this graph G greedily using construction sequence ABCDEFGHI
produces the 4-coloring 1,2,3,2,1,4,2,1,3; and χ (G) = 4 = 1 + Ĉ (G).

the graph. Color the graph using this sequence.

We obtain a bound �rst proved by Szekeres and Wilf in 1968 [57], restated in terms

of cores.

Theorem 198. [The core number bound] For any graph G, χ (G) ≤ 1 + Ĉ (G).

Proof. Establish a construction sequence for G. Each vertex has degree at most equal

to its core number when colored. Coloring it uses at most one more color. Thus

χ (G) ≤ 1 + Ĉ (G).

This bound was originally stated as χ (G) ≤ 1+maxH⊆G δ (H), with the maximum

over all subgraphs of G. Of course, checking every subgraph of a graph is not realistic.

This can easily be restricted to induced subgraphs, and the theorem is sometimes

stated with this condition. But even so, there are 2n possibilities to check. Of course,

we don't really need to check all of them. In fact, we only need to check one, the

maximum core. It is almost immediate that Ĉ (G) = maxH⊆G δ (H). The reader may

note that this upper bound, 1 + maxH⊆G δ (H), has been named the Szekeres-Wilf

number after its discoverers.
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This upper bound is essentially as easy to compute as 1 +4 (G). Computing the

maximum core number has complexity O (m). Computing the maximum degree also

has complexity O (n2), though it might be improved to O (m) by using an edge list,

which is more e�cient for sparse graphs.

Certainly we have Ĉ (G) ≤ 4 (G) for all graphs. Thus the core number bound is

always at least as good as the maximum degree bound. We have seen in Proposition

5 that for connected graphs, this is an equality exactly for regular graphs.

Now almost all graphs are not regular, so the core number bound is better for

almost all graphs. We should note however that Brooks' Theorem states that the

maximum degree bound is attained only for complete graphs and odd cycles, so it

can be improved by one to χ (G) ≤ 4 (G) by excluding those cases. The core number

bound can be employed to give a reasonably short proof of Brooks' Theorem. We

employ the following lemma based on the proof of Lovasz, modi�ed by West (see

p.198 [60]).

Lemma 199. Given r ≥ 3, if G is an r-regular 2-connected noncomplete graph, then

G has a vertex v with two nonadjacent neighbors x and y such that G − x − y is

connected.

Proof. Let G satisfy the hypothesis. Let u be a vertex of G. If G − u is 2-connected,

let u be x and y be a vertex at distance two from u, which exists because G is regular

and not complete. Let v be their common neighbor.

If G−u has connectivity one, then let v be u. Then G has at least two end-blocks,

and u has neighbors in all of them. Let x, y be two such neighbors. They must be

nonadjacent, and G− x− y is connected since blocks have no cut-vertices and r ≥ 3.

Theorem 200. [Brooks' Theorem] If G is connected, then χ (G) = 1 +4 (G) ⇐⇒ G

is complete or an odd cycle.

106



Proof. Equality certainly holds for cliques and odd cycles. Let G satisfy the hypothe-

ses. Then by the previous result, G is r-regular. The result certainly holds for r ≤ 2,

so we may assume r ≥ 3. If G had a cut-vertex, each block could be colored with

fewer than r + 1 colors to agree on that vertex, so we may assume G is 2-connected

and to the contrary not a clique.

By the lemma, we can establish a deletion sequence for G starting with some vertex

v and ending with its nonadjacent neighbors x and y so that all vertices but v have

at most r − 1 neighbors when deleted. Reversing this yields a construction sequence

and coloring greedily gives x and y the same color, so G needs at most r colors.

Even though the core number bound is strictly better in almost all cases, it seems

not to have attained the same level of prominence as the maximum degree bound,

perhaps due to the fact that without the concept of cores, it may initially appear

di�cult to compute.

We can get a sense of how much better this bound is by examining some special

classes of graphs. For the stars, K1,s, the maximum degree bound gives 1 + s, while

the core number bound gives two, which is exact. Indeed, the di�erence between the

two bounds for trees (more generally, forests) can be arbitrarily large. For the wheel

Wn, the maximum degree bound gives 1+n, while the core number bound gives four,

which is exact for odd wheels and one o� for even wheels.

Unfortunately, the core number bound can still be arbitrarily far from exact. For

example, the complete bipartite graph Kn,n has chromatic number 2, but the core

number bound gives n+ 1.

The core number bound has the following corollary on coloring k-shells.

Corollary 201. If G has a k-shell, then χ (Sk (G)) ≤ k + 1.

Proof. A k-shell is k + 1-core-free, so its maximum core number is k. The corollary

107



follows from the theorem.

One way to understand the properties of a class of graphs is to study the extremal

graphs with that property. A graph is critically k-chromatic if it has chromatic

number k but no proper subgraph has chromatic number k. Our next corollary

follows from the previous one.

Corollary 202. A critically k-chromatic graph is a k − 1-core.

Note however that a critically k-chromatic graph need not have minimum degree

k−1. For example, the Chvatal graph is critically 4-chromatic and 4-regular. In fact,

critically k-chromatic graphs need not be collapsible, nor even monocore. To show

this, we need to describe Mycielski's construction.

Mycielski's construction starts with a graph G and de�nes a new graph M (G) as

follows. For each vertex of G, add a corresponding vertex adjacent to its neighbors.

Finally, add one more vertex adjacent to all the new vertices. If G has order n,M (G)

has order 2n+ 1. The original vertices have their degrees doubled, the corresponding

new vertices have degree one larger than their original copies, and the new vertex

has degree equal to the order of the original graph. Thus for a nonempty graph G,

δ (M (G)) = δ (G) + 1, and 4 (M (G)) = max {24 (G) , n (G)}. It is well-known that

Mycielski's construction does not create any new triangles, χ (M (G)) = χ (G) + 1,

and if G is k-critical, M (G) is k + 1-critical.

Applying Mycielski's construction to the smallest 2-critical graph, K2, yields the

smallest triangle-free 3-critical graph, C5. Applying it to C5 yields the Grotzch graph,

which at order 11 is the smallest triangle-free 4-critical graph. It is 3-monocore, but

not 3-collapsible because no two vertices of degree three are neighbors. Applying

Mycielski's construction to the Grotzch graph yields a 5-critical graph G of order 23

with δ (G) = 4 and Ĉ (G) = 5. It is easily seen that Ĉ (M (G)) ≥ Ĉ (G) + 1, but
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this need not be an equality as in the previous example. No exact description of the

maximum core number of the result of applying Mycielski's construction to a graph

is known.

We would like a way to possibly improve on the core number bound. If it is not

exact, then the maximum core can be colored with fewer than 1 + Ĉ (G) colors. This

forms the rationale for our next bound.

Theorem 203. For all graphs G,

χ (G) ≤ max
k
{min {k + 1, χ (Ck (G))}} .

Proof. Establish a construction sequence for G. The cores are colored from largest

to smallest core number. Thus so are the shells. The k-core can be colored with

χ (Ck (G)) colors, and the k-shell can be colored with at most k + 1 colors. At each

stage, the minimum of these two can be used, and the maximum of these minimums

over all k is required.

This bound requires some explanation. If χ (Ck (G)) is known for all k, then the

bound reduces to the trivial χ (G) = χ (G). This bound may be useful if some of

the chromatic numbers of the cores are known, but not all, or they can at least

be bounded by some other means. Every core is an induced subgraph of the entire

graph, so coloring them is no harder than coloring the entire graph, and may be easier.

However, if G is monocore, then this bound provides no additional information.

This bound has several corollaries.

Corollary 204. If G has a 2-core, then χ (G) = χ (C2 (G)).
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Proof. Any nonempty graph requires at least two colors. The 1-shell of a graph is a

forest, and requires at most two colors.

One of the basic results on vertex coloring is that the 2-colorable graphs are exactly

the bipartite graphs.

Corollary 205. If G has a 3-core which is not bipartite, then χ (G) = χ (C3 (G)).

Proof. If the hypothesis holds, then coloring G requires at least three colors. Coloring

its 2-shell requires at most three colors.

Thus the problem of optimally coloring a graph can be readily reduced to coloring

its 3-core.

We may possibly be able to extend this analysis further. Certainly any graph

requires at least as many colors as any of its subgraphs require. The simplest graph

requiring k colors is a complete graph with k vertices. The clique number of G, ω (G),

is the largest order of a clique contained in G. The clique number is a lower bound

for the chromatic number, ω (G) ≤ χ (G). However, it may also be used to obtain a

possibly improved upper bound. We �rst state an obvious result.

Proposition 206. If ω (G) = k, then Ĉ (G) ≥ k − 1.

Corollary 207. Let k = ω (G), then χ (G) = χ (Ck−1 (G)).

4.1.2 The Coloring Chain

Thus we have the following chain of inequalities.
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De�nition 208. The coloring chain is the following chain of inequalities.

ω (G) ≤ χ (G) ≤ 1 + Ĉ (G) ≤ 1 +4 (G)

We have seen that the uppermost inequality is an equality for connected graphs

exactly when G is regular. We have mentioned Brooks' Theorem, that the chromatic

number equals the maximum degree bound for connected graphs exactly when G is

complete or an odd cycle.

A graph is de�ned to be perfect if the lower bound is an equality for every induced

subgraph of G. The problem of which graphs are perfect has been solved within the

last decade. The Strong Perfect Graph Theorem states that a graph is perfect if and

only if it does not contain any odd cycle other than K3, or the complement of any

such odd cycle, as an induced subgraph. (see [16] p.170)

The clique number and the maximum degree bound are equal exactly for the

complete graphs. This is because by Brooks' Theorem, complete graphs and odd

cycles are the only possibilities, and we have equality for complete graphs but not

odd cycles other than K3.

How about the clique number and the maximum core bound? De�ne a graph to

be chordal if every cycle has a chord. That is, it does not contain any induced cycle

other than K3. We have the following theorem due to Voloshin [1982] [58].

Theorem 209. A graph G is chordal ⇐⇒ ω (H) = 1 + Ĉ (H) for all induced subgraphs

H in G.

Proof. (⇒) The result holds for order n = 1. Assume it holds for order r, and let G

be chordal with order r + 1. Every chordal graph has a simplicial vertex, that is a

vertex whose neighbors induce a clique. Let v be simplicial, and H = G− v. Then H
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has order r, so ω (H) = 1 + Ĉ (H). Now v's neighborhood must be a clique, so it has

degree at most ω (H). Thus adding v to H can increase the maximum core number

by at most one, and if it does, then it must also increase the clique number by one.

(⇐) Let G be not chordal. Then G contains a cycle Cn, n ≥ 4, as an induced

subgraph. Then ω (Cn) = 2 < 3 = 1 + Ĉ (Cn).

Of the six pairs of expressions in the coloring chain, this leaves only the chromatic

number and the maximum core bound.

De�nition 210. A graph G is core perfect if χ (G) = 1 + Ĉ (G).

We can state a few basic facts about core perfect graphs. A graph G is core perfect

if and only if its maximum core is core perfect. Hence, we can restrict the question of

determining which graphs are core perfect to monocore graphs. All 0-monocore and 1-

monocore graphs (empty graphs and forests without trivial components, respectively)

are core perfect, and a 2-monocore graph is core perfect if and only if it contains an

odd cycle.

A k-monocore graph is core perfect if and only if it has a component that is

core perfect. A connected k-monocore graph is core perfect if and only if it has

a block which is a k-core and core perfect. By a result of David Matula, [Char-

trand/Zhang p.177] [16] a connected k-monocore graph is core perfect only if it has

edge-connectivity k−1. By Brooks' Theorem, the only core perfect connected regular

graphs are cliques and odd cycles.

Characterizing core perfect graphs appears to be a di�cult problem in general.

On the other hand, it is possible for all three inequalities to be strict simultaneously.

For example, the graph C5 × P3 has 2, 3, 4, 5 for the respective values of the four

quantities in question.
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4-tuple Must have component May have component

(1, 1, 1, 1) K1 K1

(2, 2, 2, 2) K2 K1

(2, 2, 2, 3) Pn, n ≥ 3 path

(2, 2, 3, 3) even cycle path

(2, 3, 3, 3) odd cycle (not K3) cycle, path (not K3)

(k, k, k, k) Kk H with 4 (H) ≤ k − 1

(2, 2, 2, k) tree T with 4 (T ) = k − 1 tree T with 4 (T ) ≤ k − 1

Table 6: Some 4-tuples characterize graph classes.

This raises the question of which 4-tuples (a, b, c, d) are possible, such that there

is a graph G with a = ω (G), b = χ (G), c = 1 + Ĉ (G), d = 1 +4 (G). We call such

a 4-tuple valid. Graphs with some 4-tuples can be characterized, as in Table 6.

Certainly a 4-tuple must satisfy a ≤ b ≤ c ≤ d, and for any nontrivial graph,

a ≥ 2. We have the following helpful result.

Proposition 211. Let (a, b, c, d) be a valid 4-tuple, a ≥ 2. Then (a, b, e, f) is a valid

4-tuple provided c ≤ e ≤ f and d ≤ f .

Proof. Let G be a graph corresponding to (a, b, c, d). Construct a graph H as follows.

While the graph obtained is not regular, create two copies of the graph and join

the vertices of smallest degree. This process will eventually terminate with a regular

graph H. Now H ⊆ (G×Qe−c), where Qn is the n-dimensional hypercube. H has

chromatic number and clique number equal to those of G, since the chromatic number

of a Cartesian product is the maximum of those of its factors. Then H ∪K1,f−1 has

the 4-tuple (a, b, e, f) since the product increases the maximum core number by e− c,
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and the star increases the maximum degree to f − 1.

It is known that there are graphs with any clique number and larger chromatic

number. These can be generated by repeatedly applying Mycielski's construction

to a clique, for example. The di�cult case in determining which 4-tuples are valid

is �nding such graphs with relatively low maximum core numbers and maximum

degrees, or showing that no such graphs exist.

The Grotzch graph has 4-tuple (2, 4, 4, 6), and the Chvatal graph has 4-tuple

(2, 4, 5, 5). By Brooks' Theorem, (a, b, b, b) 6= (2, 3, 3, 3), a < b, is not a valid 4-

tuple. It is not hard to see that (2, 4, 4, 5) is the smallest 4-tuple with respect to

lexicographic order for which validity is unclear.

4.1.3 Eigenvalue and Independence Bounds

There is another upper bound for the chromatic number worth considering. It

involves the eigenvalues of a graph. Any graph can be represented by its adjacency

matrix, which is square. The eigenvalues of this matrix can be computed. The

spectrum of a graph is de�ned to be the sequence of eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn,

so that λ1 = λ1 (G) is the largest eigenvalue of the graph. The following Theorem is

due to Wilf [1967] [62].

Theorem 212. [The eigenvalue bound] Let G be a connected graph. Then χ (G) ≤

1 + λ1, with equality exactly for complete graphs and odd cycles.

The proof of this result uses linear algebra and will be omitted. We also have the

following results on eigenvalues of graphs, which will be stated without proof. See

Schwenk/Wilson [52] for background on eigenvalues of graphs.
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Theorem 213. [Properties of eigenvalues of graphs]

a. The eigenvalues of a graph are all real algebraic numbers, but need not be

rational.

b. The spectrum of a graph is the union of the spectra of its components. (Thus

we may restrict our attention to connected graphs. This result follows from the fact

that the adjacency matrix of a disconnected graph may be partitioned into blocks.)

c. Let d be the average degree of G and ∆ its maximum degree. Then d ≤ λ1 ≤ ∆

with equality in both cases exactly when G is regular.

d. If G is connected, λ2 < λ1. If H is an induced subgraph of G, then λ1 (H) <

λ1 (G).

Since the eigenvalue bound need not be an integer, it could be stated as χ (G) ≤

1 + bλ1c. However, this form turns out to be harder to work with, and is equivalent

in any case, so we will not use it.

We want to know how the eigenvalue bound relates to the other bounds we have

discussed. As an immediate corollary of part c, we have the following.

Corollary 214. The eigenvalue bound is better than the maximum degree bound. That

is, 1 + λ1 ≤ 1 + ∆, with equality exactly for regular graphs.

We can also compare the eigenvalue bound to the core number bound.

Theorem 215. A connected graph G has 1 + Ĉ (G) ≤ 1 + λ1 (G), with equality exactly

for regular graphs.

Proof. Let k = Ĉ (G), H = Ck (G). Then Ĉ (G) = Ĉ (H) = δ (H) ≤ λ1 (H) ≤ λ1 (G).

If G is regular, then Ĉ (G) = δ (G) = λ1 (G) = ∆ (G). Assume G is nonregular.

Suppose �rst that G is monocore. Then Ĉ (G) = δ (G) < d (G) < λ1 (G). Next
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suppose that G is not monocore. Then Ĉ (G) = Ĉ (H) = δ (H) ≤ λ1 (H) < λ1 (G),

so the result holds in either case.

Thus the eigenvalue bound is better than the maximum degree bound, but weaker

than the core number bound. We could extend the coloring chain to the following.

ω (G) ≤ χ (G) ≤ 1 + Ĉ (G) ≤ 1 + λ1 (G) ≤ 1 +4 (G)

The only case in which we have not yet determined equality with the eigenvalue

bound is the clique number.

Corollary 216. For connected graphs G, ω (G) ≤ 1 + λ1 (G), with equality exactly for

complete graphs.

Proof. We have seen that χ (G) ≤ 1 + λ1, with equality exactly for complete graphs

and odd cycles. Now ω (G) ≤ χ (G), with equality for complete graphs and not for

odd cycles beyond C3.

Determining the corresponding equalities for the �oor of the eigenvalue bound is

unsolved and appears di�cult.

There is another bound that may be of interest. It involves the independence

number α (G). It is not hard to see that χ (G) ≤ n−α (G)+1, since G can be colored

with n−α (G) + 1 colors by coloring a maximum independent set with one color and

all other vertices with distinct colors. Determining the independence number of a

graph is NP-complete, so this bound is not easy to calculate in general. It is also no

better than the core number bound.

Proposition 217. We have 1 + Ĉ (G) ≤ n− α (G) + 1.
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Proof. Let G have independence number α = α (G), and S be an independent set

of α vertices. Construct a graph H be adding all possible edges to G that don't

have both ends in S. Then H = Kn−α + αK1. Then Ĉ (G) ≤ Ĉ (H) = n − α, so

1 + Ĉ (G) ≤ n− α (G) + 1.

It is not immediately obvious which graphs produce equality in this result. How-

ever, it is not di�cult to determine which graphs produce equality for the original

bound.

Corollary 218. We have χ (G) = n− α + 1 exactly for G = Kn−α + αK1.

Proof. G has an independent set S of size α. If some vertex of G not in S was not

adjacent to some other vertex of G, then either S could be enlarged, or some other

color could be used more than once, which is impossible.

4.1.4 The Order and Size Bound

The core number bound is useful in proving an upper bound for the chromatic

number in terms of order and size only. This theorem is due to Co�man, Hakimi, and

Schmeichel [2003] [19]. The proof of part a below is a simpli�cation of the original

proof and the version appearing in Chartrand/Zhang [p. 183-184] [16].

Theorem 219. Let G be connected with a 2-core and order n, size m.

a. If the 2-core of G is not a clique or an odd cycle, then

χ (G) ≤

⌊
3 +

√
1 + 8 (m− n)

2

⌋

b. For every pair (n,m) with either n = m or n < m <
(
n
2

)
, the bound is sharp.
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Proof. Let d = Ĉ (G). Deleting the 1-shell of G leaves m − n unchanged, so we may

assume G is a 2-core. If G is an even cycle then the bound is 2, which is exact. If

G is any other 2-monocore graph, then m ≥ n + 1 and the bound is at least 3, so it

holds. Now we may assume d ≥ 3, and we wish to show that m ≥ n +
(
d
2

)
. Since G

is not complete, d ≤ n− 2.

Let H be the maximum core of G with order r ≥ d+ 1 and size at least r·d
2
. If G

is d-monocore, then

m ≥
⌈
n · d

2

⌉
= n+

⌈
n (d− 2)

2

⌉
≥ n+

⌈
(d+ 2) (d− 2)

2

⌉
≥ n+

(
d

2

)
.

If G is not monocore, the size of G−H is at least n− r+ 1 by Proposition 29. Then

m ≥ n− r + 1 +
r · d

2
≥ n+ 1 +

r (d− 2)

2
≥ n+ 1 +

(d+ 1) (d− 2)

2
= n+

(
d

2

)
.

Then d2 − d− 2 (m− n) ≤ 0, so by the core number bound,

χ (G) ≤ 1 + d ≤
3 +

√
1 + 8 (m− n)

2
.

Using the 2-core improves what can be proven without it, which follows as a

corollary.

Corollary 220. Let G by connected with order n, size m. Then

χ (G) ≤

⌊
3 +

√
9 + 8 (m− n)

2

⌋

and the bound is sharp for every pair (n,m) with n ≥ 2 and n− 1 ≤ m ≤
(
n
2

)
.
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4.1.5 Graph Classes Related to Cores

We can study coloring of graphs that are related to cores. One class we have

studied is core perfect.

Proposition 221. If G is maximal k-degenerate, then χ (G) = k + 1.

Proof. G contains a k + 1-clique, and and has maximum core number k.

It would seem to be an achievable goal to determine the chromatic numbers of all

3-core-critical graphs. Since it is easy to determine when a graph is bipartite, the

question comes down to distinguishing between 4-chromatic and 3-colorable graphs.

Since deleting any edge of a 3-core-critical graph destroys its 3-core, any such 4-

chromatic graph is 4-critical.

We consider some special classes of 3-core-critical graphs. Note that odd wheels

are 4-chromatic. We can generate many more 4-chromatic graphs using the following

operation. The Hajos sum of two graphs G and H is de�ned by identifying two

vertices of the graphs as v. Given edges uv and vw in G and H respectively, the

Hajos sum of G and H is the graph G ∪
v
H − uv − vw + uw. It is not hard to show

that the Hajos sum of two k-critical graphs is k-critical. Provided that the vertex v

is not adjacent to a vertex of degree more than three except possibly one of u and w,

the Hajos sum preserves 3-core-critical graphs.

On the other hand, it appears that many more minimally 3-collapsible graphs are

3-colorable. By Brooks' Theorem, this includes all regular graphs except K4. It also

includes any with a cut-vertex or a 2-edge-cut. Even wheels are certainly 3-colorable,

which takes care of all such graphs with maximum degree 4 = n−1. All such graphs
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Figure 29: The Hajos sum of K4 and K4 is 4-critical and 3-core-critical.

with 4 = n − 2 are 3-colorable since we have seen that they have two nonadjacent

vertices of degree more than three and all the other vertices induce a linear forest.

Finally we note that an r-necklace is 3-colorable since its vertices of degree 4 form an

independent set and its vertices of degree 3 induce a matching.

We o�er the following conjecture.

Conjecture 222. All 4-chromatic 3-core-critical graphs can be formed from odd wheels

using the Hajos sum.

4.1.6 The Greedy Core Algorithm

The maximum core bound need not produce the best possible bound for large

classes of graphs. For planar graphs, it produces an upper bound of six, as we will

see in the section on planarity.

We might hope that the maximum core bound were exact for almost all graphs,

but this is not the case. Michael Molloy [1996] [44] has shown using random graph

theory that for k ≥ 4, a k-core appears in the random graph before a k+ 1-chromatic

subgraph. It would be interesting to know the values of the maximum core number

and chromatic number for almost all graphs in terms of n.

We may hope to improve on the maximum core bound by a shrewd coloring of the

cores. We say a coloring algorithm is adjacency-based if every vertex that is colored

must be adjacent to a previously colored vertex, if one can exist. This leads us to the
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following algorithm.

Algorithm 223. [Greedy Core Coloring]

Input: a graph G

Initialization: Establish a construction sequence for G.

Iteration: Color G according to the construction sequence. Assign each vertex the

least color not used by any of its neighbors.

It is possible that starting with a vertex of large degree might improve the greedy

core coloring algorithm, but this is unknown.

This algorithm can improve on the maximum core bound. For example, it will be

exact for all 2-chromatic graphs, that is nontrivial bipartite graphs, since there is no

point at which a vertex of a bipartite graph could be adjacent to vertices of more

than one color class.

How does this algorithm fare on 3-core-critical graphs of small order? It is exact

forK4 andW4, as well as three of the four 3-core-critical graphs of order six. However,

it need not be exact for K3 ×K2. Whether it is exact will depend on the particular

construction sequence used. By exhaustively checking all possibilities, I determined

that the algorithm fails to be exact 25
54

of the time, and so is exact 29
54

of the time.

I will nonetheless make the following somewhat audacious conjecture.

Conjecture 224. The Greedy Core Algorithm yields the chromatic number exactly for

almost all graphs and construction sequences.

The following conjecture seems likely, but has yet to be proven.

Conjecture 225. Every graph has a construction sequence which yields an exact color-

ing.
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4.1.7 Chromatic Polynomials

A more general problem than determining the chromatic number of a graph is

to determine the number of distinct colorings of a graph using k colors, for any k.

Speci�cally, the problem is to determine a function that gives the number of distinct

k-colorings of G in terms of k. It turns out that such a function must be a polynomial,

so it is called the chromatic polynomial of G. (See [16] p. 211-216 for background.)

Algorithms exist to determine this polynomial, but they not e�cient, so determin-

ing the chromatic polynomial is di�cult for large graphs. Using cores can simplify

this problem somewhat.

Certainly any isolated vertex of a graph can be colored with any of k colors inde-

pendent of the coloring of the rest of the graph.

Proposition 226. Let n0 be the order of the 0-shell of G. Then the chromatic polynomial

χ (G, k) = kn0χ (C1 (G) , k).

Proof. There are k choices for the color of each isolated vertex, independent of any

choices for the coloring elsewhere.

For each vertex of degree one, one choice is excluded, so there are k − 1 colors

available for it. This leads to the next theorem.

Theorem 227. Let G be a connected 1-core containing a 2-core, n1 the order of its

1-shell. Then

χ (G, k) = (k − 1)n1 χ (C2 (G) , k) .
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Proof. If n1 = 0, then

χ (G, k) = χ (C2 (G) , k) = (k − 1)0 χ (C2 (G) , k) .

Assume the result holds for order n1 = r and let G have a 1-shell of order r + 1.

Then G has an end-vertex vertex v. Let H = G − v and e = uv, the edge incident

with v. By the chromatic recurrence,

χ (G, k) = χ (G− e, k)− χ (G · e, k)

= k · χ (H, k)− χ (H, k)

= (k − 1) · χ (H, k)

= (k − 1) (k − 1)r · χ (C2 (G) , k)

= (k − 1)r+1 · χ (C2 (G) , k)
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4.2 Nordhaus-Gaddum Class Theorems

4.2.1 The Nordhaus-Gaddum Theorem

One common way to study a graph parameter p (G) is to examine the sum p (G)+

p
(
G
)
and product p (G) · p

(
G
)
. A theorem providing sharp upper and lower bounds

for this sum and product is known as a theorem of the Nordhaus-Gaddum class. Of

the four possible bounds, the sum upper bound has attracted the most attention. We

will examine results of this type for maximum core number and chromatic number.

Theorem 228. We have Ĉ (G)+Ĉ
(
G
)
≤ n−1. The graphs for which Ĉ (G)+Ĉ

(
G
)

=

n− 1 are exactly the graphs constructed by starting with a regular graph and iterating

the following operation.

Given k = Ĉ (G), H a k-monocore subgraph of G, add a vertex adjacent to at least

k + 1 vertices of H, and all vertices of degree k in H (or similarly for G).

Proof. Let p = Ĉ (G) and suppose G has an n − p-core. These cores use at least

(p+ 1) + (n− p+ 1) = n+ 2 vertices, and hence share a common vertex v. But then

dG (v) + dG (v) ≥ p+ (n− p) = n, a contradiction.

If G is regular with k = Ĉ (G), then G is n−k−1-regular, so Ĉ (G)+Ĉ
(
G
)

= n−1.

If a vertex v is added as in the operation, producing a graph H, a k + 1-core is

produced, so Ĉ (H) + Ĉ
(
H
)

= (n+ 1)− 1.

Suppose that for a graph G, Ĉ (G)+Ĉ
(
G
)

= n−1. If G and G are both monocore,

then they must be regular. If G has a vertex v that is not contained in the maximum

cores of both G and G, then Ĉ (G− v)+Ĉ
(
G− v

)
= (n− 1)−1. Then v is contained

in the maximum core of one of them, say G. Further, given k = Ĉ (G), v is contained

in a k-monocore subgraph H of G, and H − v must be k− 1-monocore. Then v must

have been adjacent to all vertices of degree k−1 in H−v. Thus G can be constructed

as described using the operation.
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The original Nordhaus-Gaddum Theorem deals with the chromatic number (see

Chartrand/Zhang p. 185-186 [16]). Its proof follows as a corollary, using the core

number bound.

Corollary 229. [Nordhaus-Gaddum] We have χ (G) + χ
(
G
)
≤ n+ 1.

Proof. We have χ (G) + χ
(
G
)
≤ 1 + Ĉ (G) + 1 + Ĉ

(
G
)
≤ n− 1 + 2 = n+ 1.

It is convenient to consider a graph and its complement as a decomposition of a

complete graph. This makes it possible to generalize the problem to more than two

factors.

De�nition 230. A k-decomposition of a graph G is a decomposition of G into k sub-

graphs. For a graph parameter p, let p (k;G) denote the maximum of
∑k

i=1 p (Gi)

over all k-decompositions of G.

It may be that it is possible to delete some edges from one of the subgraphs so

that it still has the same chromatic number. Thus we are most interested in the

color-critical subgraphs of the subgraphs of the decomposition. Conversely, given the

critical subgraphs, we can distribute the extra edges arbitrarily. This �nal step is

uninteresting, so we will tend to describe a k-decomposition as {H1, ..., Hk}, where

each Hi is a color-critical subgraph.

We would like to characterize the extremal decompositions for the Nordhaus-

Gaddum Theorem. Note that if a 2-decomposition ofKn achieves χ (G)+χ
(
G
)

= n+

1, then we can easily construct a 2-decomposition of Kn+1 with χ (G)+χ
(
G
)

= n+2,
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by joining a vertex to all the vertices of a color-critical subgraph of G or G, and allo-

cating the extra edges arbitrarily. Conversely, we may be able to delete some vertex

v of Kn so that χ (G) + χ
(
G
)

= n. If this is impossible, we say that an extremal

decomposition is fundamental.

De�nition 231. A k-decomposition of Kn with K =
∑k

i=1 χ (Gi) achieving the maxi-

mum possible such that no vertex v of Kn can be deleted so that
∑k

i=1 χ (Gi − v) =

K − 1 is called a fundamental decomposition.

Theorem 232. For k = 2, the fundamental decompositions that attain χ (2;Kn) = n+1

are {K1, K1} and {C5, C5}.

Proof. It is easily seen that χ (K1) + χ (K1) = 2 and χ (C5) + χ (C5) = 6, so these

decomposition satisfy the equation. They are fundamental since no vertex can be

deleted from the �rst, and deleting a vertex from the second produces two copies of

P4, and χ (P4) + χ (P4) = 4.

Consider a fundamental 2-decomposition
{
G,G

}
. Then both graphs are con-

nected. Let χ (G) = r, so that χ
(
G
)

= n+ 1− r. Then G is an r − 1-core and G is

an n − r-core. But then G and G must be regular, since n − 1 = dG (v) + dG (v) ≤

Ĉ (G) + Ĉ
(
G
)
≤ n−1. Now by Brooks' Theorem, the only connected regular graphs

achieving χ (G) = 1 + Ĉ (G) are cliques and odd cycles. The only such graphs whose

complements are connected and also achieve the upper bound are are K1 and C5.

Thus the fundamental 2-decompositions are as stated.

We can now describe all extremal 2-decompositions for the upper bound of the

Nordhaus-Gaddum theorem.
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Corollary 233. The extremal 2-decompositions for the upper bound of the Nordhaus-

Gaddum theorem are exactly {Kp, Kn−p+1} and {C5 +Kp, C5 +Kn−p−5}.

Proof. It is immediate that these are extremal 2-decompositions. Assume that we

have an extremal 2-decomposition
{
G,G

}
with order n and let G be r-critical. If the

critical subgraphs overlap on a single vertex and G = Kr, then G = Kn−r+rK1, which

is uniquely n− r + 1-colorable. Deleting any edge of the copy of Kn−r would reduce

the chromatic number, so Kn−r+1 is the only possible n− r + 1-critical subgraph. If

G 6= Kr has order p ≥ r+2, then the critical subgraph ofG is contained inKn−p+pK1,

which is impossible. If the critical subgraphs overlap on C5, the argument is similar.

In 1968, H. J. Finck [26] determined a similar but inelegant characterization whose

proof is more than three pages long. In 2008, Starr and Turner [56] determined the

following alternative characterization.

Theorem 234. Let G and G be complementary graphs on n vertices. Then χ (G) +

χ
(
G
)

= n + 1 if and only if V (G) can be partitioned into three sets S, T , and {x}

such that G [S] = Kχ(G)−1 and G [T ] = Kχ(G)−1.

The proof of this result is almost three pages. This characterization leaves some-

thing to be desired since it is not obvious which graphs satisfy the condition given in

the theorem. However, this result follows immediately as a corollary to the previous

theorem. Hence the proof of Theorem 232 is signi�cantly shorter than either of the

previous characterizations.

Having characterized the graphs for which χ (G)+χ
(
G
)

= n+1, we may consider

when χ (G) +χ
(
G
)

= n. Restricted to regular graphs, this is not a di�cult problem.
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Proposition 235. If G is regular and χ (G) + χ
(
G
)

= n, then the 2-decompositions

that satisfy this equation are
{
C7, C7

}
and {C4, 2K2}.

Proof. Assume the hypothesis. Then n = χ (G)+χ
(
G
)
≤ 1+Ĉ (G)+1+Ĉ

(
G
)

= n+1,

so exactly one of G or G achieves the core number bound, say G. If G is connected,

then by Brooks' Theorem, G is a complete graph or odd cycle. But the complement

of a complete graph also achieves the upper bound. If G is an odd cycle of length at

least 5, then χ
(
Cn

)
= n+1

2
. But Cn is n− 3-regular, so n+1

2
= n− 3 implies n = 7.

If G is disconnected, then it is a union of r-regular components, at least one of

which is a clique or an odd cycle. Consider starting with only this component and

adding another component with order k. This increases χ (G) + χ
(
G
)
by at most

k− r. Thus to satisfy the equation we want r = 1, so the new component is K2, and

no other component can be added. Thus only the 2-decomposition {C4, 2K2} works.

We can also consider products of the maximum core numbers of a graph and its

complement.

Corollary 236. We have 0 ≤ Ĉ (G) · Ĉ
(
G
)
≤
(
n−1

2

)2
. The lower bound is an equality

exactly for
{
Kn, Kn

}
. The upper bound is an equality exactly when the sum bound is

attained and Ĉ (G) = Ĉ
(
G
)
.

Proof. The lower bound is obvious. Equality occurs exactly when one of the factors

is 0, implying one is empty and the other is complete. Now since
√
xy ≤ x+y

2
with

equality exactly when x = y, Ĉ (G) · Ĉ
(
G
)
≤
(
n−1

2

)2
with equality exactly when the

sum bound is attained and Ĉ (G) = Ĉ
(
G
)
.

Corollary 237. [Nordhaus-Gaddum] We have χ (G) · χ
(
G
)
≤
(
n+1

2

)2
. The bound is
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attained exactly for
{
Kn+1

2
, Kn+1

2

}
and

{
C5 +Kn−5

2
, C5 +Kn−5

2

}
.

This follows using the same argument as in the previous corollary. This bound is

attained exactly when the sum bound is attained and χ (G) = χ
(
G
)
.

4.2.2 Plesnik's Conjecture

We now consider decompositions of graphs into more than two parts. Jan Plesnik

[49] studied χ (k;Kn) and in 1978 made the following conjecture.

Conjecture 238. [Plesnik's Conjecture] For n ≥
(
k
2

)
, χ (k;Kn) = n+

(
k
2

)
.

For k = 2, this is just the Nordhaus-Gaddum theorem. Plesnik proved the conjec-

ture for k = 3 and determined an upper bound for χ (k;Kn).

There is a simple construction that shows χ (k;Kn) is at least n +
(
k
2

)
. Take the

line graph L (Kk) with order
(
k
2

)
and decompose it into k copies of Kk−1. For any

additional vertex, make it adjacent to all the vertices of one of the cliques in the

decomposition and allocate any extra edges arbitrarily.

Plesnik proved a recursive upper bound of χ (k;Kn) ≤ n + t (k), where t (2) = 1

and t (k) =
∑k−1

i=2

(
k
i

)
t (i). Thus t (3) = 3 and t (4) = 18. This implies a worse explicit

bound of χ (k;Kn) = n + 2(k+1
2 ). In 1985, Timothy Watkinson [59] improved this

upper bound to χ (k;Kn) = n+ k!
2
. In 2005, Furedi, Kostochka, Stiebitz, Skrekovski,

and West [27] proved an improved upper bound for large k of χ (k;Kn) ≤ n+ 7k. All

of these bounds remain far from Plesnik's conjecture, however.

We can describe many fundamental decompositions for k ≥ 3 using the following

construction.
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Algorithm 239. [Construction of fundamental k-decompositions] For k ≥ 3 and n ≥(
k
2

)
, construct a decomposition of Kn as follows.

1. Start with the line graph L (Kk) decomposed into k copies of Kk−1.

2. Replace each vertex by either K1 decomposed into {K1, K1} or K5 decomposed

into {C5, C5}.

3. Join each factor to the other factors corresponding to the same copy of Kk−1 in

the decomposition of L (Kk).

4. Allocate any remaining edges arbitrarily.

We will see below that the graphs produced by this algorithm attain the bound of

Plesnik's conjecture. This algorithm produces all such graphs for k = 2 but not all

for k = 3.

Lemma 240. 1. For k ≥ 3, let D be a k-decomposition with every vertex contained in

exactly two color-critical subgraphs of the decomposition that maximizes
∑k

i=1 χ (Gi).

Then
∑k

i=1 χ (Gi) = n+
(
k
2

)
.

2.The k-decompositions produced by the preceding algorithm satisfy
∑k

i=1 χ (Gi) =

n+
(
k
2

)
.

Proof. Assume the hypothesis and let Hi be the critical subgraphs of the k graphs.

Thus we can partition the n vertices into
(
k
2

)
classes: Vij = V (Hi) ∩ V (Hj). Now

the edges between Vij and Vil may as well be in Hi since this is the only critical

subgraph with vertices in both classes. Similarly, if Vij and Vlm have no common

indices, then no edges between them are contained in a critical subgraph. Then

χ (Hi) ≤
∑

j χ (Hi [Vij]), where 1 ≤ j ≤ k, i 6= j. Then n +
(
k
2

)
≤
∑
χ (Hi) ≤∑

i,j χ (Hi [Vij]) ≤
∑

(n (Vij) + 1) = n +
(
k
2

)
, with the last inequality following from

the Nordhaus-Gaddum theorem. But then we have equalities, which implies that∑k
i=1 χ (Gi) = n+

(
k
2

)
, and the two graphs that decompose Kn [Vij] form an extremal
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2-decomposition. Since {K1, K1} and {C5, C5} are fundamental 2-decompositions,

Algorithm 239 produces fundamental k-decompositions.

Now we can prove Plesnik's conjecture for k = 3.

Theorem 241. For k = 3 and n ≥ 3, χ (3;Kn) = n+ 3.

Proof. Assume that some fundamental decomposition of Kn into three factors yields

χ (G1) = a + 1, χ (G2) = b + 1, and χ (G3) = c + 1, with a + b + c = n. We may

consider the critical subgraphs Hi of the three graphs, which are a, b, and c-cores,

respectively. Now no vertex of Kn can be contained in all three of the Hi's, since this

would imply that Kn has at least a+ b+ c+ 1 = n+ 1 vertices.

Since deleting a vertex from a k-critical graph produces a k − 1-chromatic graph

and the decomposition is fundamental, every vertex is contained in exactly two of the

three critical subgraphs. Then by Lemma 240, χ (3;Kn) = n+ 3.

The fundamental 3-decompositions produced by Algorithm 239 are {K2, K2, K2},

{W5,W5, K2}, {W5,W5, C5 + C5}, and {C5 + C5, C5 + C5, C5 + C5}. However, these

are not all the fundamental 3-decompositions. This is because the extremal 2-

decompositions produced in the next-to-last sentence of the proof of Lemma 240

need not be fundamental, as can be seen in Figure 30.

We can determine all fundamental 3-decompositions. We need the following lemma.

Lemma 242. There are exactly six 4-critical subgraphs of G = C5 +Kn−5.
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Figure 30: A fundamental 3-decomposition with 2-decompositions {K1, K1},{C5, C5}
and

{
K2, K2

}
.

Proof. Clearly any such subgraph must contain the copy of C5 and at least one more

vertex. If n = 6, W5 = C5 + K1 is clearly the only possibility. Let S be the set of

vertices not on C5. Since we want a 4-critical subgraph, consider adding each vertex in

S one at a time. Then each of them must successively restrict the possible colorings

of G, since otherwise it could be deleted and there would be a smaller 4-critical

subgraph.

Suppose a vertex in S has degree 4. Note that any vertex of degree 3 either

(A) neighbors three consecutive vertices on the cycle or (B) exactly two consecutive

vertices on the cycle and a third not adjacent to either of them. Adding a vertex

of degree 4 or a degree 3 vertex of type A adjacent to the remaining vertex on the

cycle produces a 4-chromatic graph, but at least one edge can be deleted to obtain a

4-critical graph G1. Checking the possible placements of a degree 3 vertex of type B,

only one possibility produces a 4-critical graph. (This graph is M (K3), the result of

applying Mycielski's construction to K3.)

Now suppose that we start with a vertex v of type A. Adding a vertex u of type

A having one common neighbor with v produces a 4-critical graph G2 (which is the

result of applying the Hajos construction to two copies of K4). If instead u has two

common neighbors with v, checking cases shows that there is only one way to add a

vertex w (of type B) to produce a 4-critical graph G3.

Now suppose that we allow exactly one vertex v of type A. Checking cases shows
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Figure 31: The 4-critical graphs W5, G1 = M (K3), G2, G3, G4, G5.

that there is exactly one way to produce a 4-critical graph G4, by adding two type B

vertices, each having two consecutive vertices of the cycle as common neighbors with

v.

Finally, suppose that we allow only vertices of type B. There are �ve possible

placements of a type B vertex. Adding all �ve of them produces a 4-chromatic graph

G5, but deleting one produces a 3-chromatic graph. Thus G5 must be 4-critical.

We denote the generalized wheel Wp,q = Cp +Kq. It is 3 + q-critical if p is odd.

Theorem 243. There are exactly 29 fundamental 3-decompositions. These are given

in Table 7, where we let C5,5 = C5 + C5.
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{K2, K2, K2} {W5, W5, K2} {W5, W5, C5,5} {C5,5, C5,5, C5,5}

{W5, K3, G1} {W5, K3, G2} {W5, K4, G3} {W5, K4, G4} {W5, K6, G5}

{C5,5, W5,2, G1} {C5,5, W5,2, G2} {C5,5, W5,3, G3} {C5,5, W5,3, G4} {C5,5, W5,5, G5}

{G1, G1, K4}

{G1, G2, K4} {G2, G2, K4}

{G1, G3, K5} {G2, G3, K5} {G3, G3, K6}

{G1, G4, K5} {G2, G4, K5} {G3, G4, K6} {G4, G4, K6}

{G1, G5, K7} {G2, G5, K7} {G3, G5, K8} {G4, G5, K8} {G5, G5, K10}

Table 7: The 29 fundamental 3-decompositions.

Proof. By the lemma, there are exactly �ve extremal 2-decompositions that can ap-

pear in a fundamental 3-decomposition: {C5, C5}, {K1, K1},
{
K2, K2

}
,
{
K3, K3

}
,

and
{
K5, K5

}
. Denote the �rst two as symmetric and the last three nonsymmet-

ric. One of these �ve must be chosen for each of the three overlap sets of a fun-

damental 3-decomposition, but this choice is not independent. If a nonsymmetric 2-

decomposition appears, then {C5, C5}must also appear. Joining a pair of graphs from

the 2-decompositions produces a color-critical graph except in the caseG = C5+Kn−5,

n ≥ 7, for which the lemma provides �ve possible color-critical subgraphs.

If all three 2-decompositions are symmetric, there are four possibilities, as given

in the �rst row of the table.

Suppose exactly one nonsymmetric 2-decomposition appears. Then {C5, C5} must

also appear, and the third 2-decomposition can be either {C5, C5} or {K1, K1}. Thus

there are 5 · 2 = 10 possibilities, which are given in the second and third rows of the

table.

Suppose exactly two nonsymmetric 2-decompositions appear, so {C5, C5} is the

third. Then we must choose two of the �ve color-critical subgraphs as factors, and

the third must be a clique. Thus there are
(

5
2

)
+ 5 = 15 possibilities, which are given

in last �ve rows of the table.
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Figure 32: A 4-decomposition of K7 into {K4, K3, K3, C5} with a vertex contained in
three factors.

We would like to determine all extremal 3-decompositions. Examples of some that

are not fundamental include {Kp, Kp, C2p−1} or {Kp + C5, Kp + C5, C2p−1}.

Not all fundamental k-decompositions are produced by Algorithm 239 for k ≥ 4.

Watkinson [59] describes a decomposition of K7 into {K4, K3, K3, C5}, though his

presentation of this example contains an error. This example has a vertex contained in

three critical subgraphs. The decomposition nonetheless has
∑4

i=1 χ (Gi) = n+
(

4
2

)
=

7 + 6 = 13.

4.2.3 Related Results

Furedi et al [27] studied related problems and proved the following.

Theorem 244. For all positive integers n and k,

a. If n ≥
(
k
2

)
, ω (k;Kn) = n+

(
k
2

)
.

b. We have χ (k;Kn) ≤ n+ 7k.

c. We have Ĉ (k;Kn) ≤
√
k · n.

d. We have Ĉ (2;Kn) = n−1, Ĉ (3;Kn) =
⌊

3
2

(n− 1)
⌋
, and Ĉ (4;Kn) =

⌊
5
3

(n− 1)
⌋
.

The decomposition of the line graph L (Kk) into k copies ofKk−1 achieves ω (k;Kn) =

n +
(
k
2

)
. Given the simplicity of this decomposition, it is surprising that the bound

in part b remains far from Plesnik's conjecture.
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We can determine an analogous results for independence number and maximum

degree.

Proposition 245. We have α (k;Kn) = (k − 1)n+ 1.

Proof. Consider the decomposition
{
Kn, Kn, ..., Kn

}
. Then

∑
α (Gi) = (k − 1)n+ 1.

We use induction on order. Certainly α (k;K1) = k. Assume α (k;Kr) = (k − 1) r+

1, and let D be a decomposition of G = Kr+1. Consider the decomposition D′ of

G− v formed by deleting v from each subgraph of D. If
∑

D′ α (Gi) < (k − 1) r + 1,

then
∑

D α (Gi) ≤ (k − 1) r + k = (k − 1) (r + 1) + 1. If
∑

D′ α (Gi) = (k − 1) r + 1,

then by the pigeonhole principle, some vertex of Kr is contained in all k indepen-

dent sets. Then v is contained in at most k − 1 independent sets, so
∑

D α (Gi) ≤

(k − 1) r + 1 + (k − 1) = (k − 1) (r + 1) + 1. In either case, the result holds by

induction.

Note that the case k = 2, α (2;Kn) = n + 1 is essentially the Nordhaus-Gaddum

theorem due to the symmetry of complementation.

Proposition 246. We have 4 (k;Kn) =
(
n
2

)
−
(
n−k

2

)
.

Proof. Consider the decomposition with Gi = K1,max(n−i,0) and any extra edges dis-

tributed arbitrarily. Then
∑
4 (Gi) =

∑n−1
i=max(n−k,0) i =

(
n
2

)
−
(
n−k

2

)
.

We use induction on order. If k ≥ n, then
∑

D4 (Gi) ≤
∑

Dm (Gi) =
(
n
2

)
. If

k < n, assume 4 (k;Kr) =
(
r
2

)
−
(
r−k

2

)
, and let D be a decomposition of G = Kr+1.

Let v be a vertex that does not uniquely have maximum degree in any of the k

subgraphs. Consider the decomposition D′ of G− v formed by deleting v from each

subgraph of D. Then adding v to the subgraphs of D′ increases each maximum degree
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by at most one. Then
∑

D4 (Gi) ≤
(
r
2

)
−
(
r−k

2

)
+ k =

(
r+1

2

)
−
(
r+1−k

2

)
. The result

holds by induction.
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4.3 Other Forms of Coloring

4.3.1 Edge Coloring

While proper vertex coloring is the best-known type of graph coloring, it is far from

the only kind. Edge coloring is similar to vertex coloring, except that the edges

are colored. Clearly the edge chromatic number, χ1 (G), is at least as large as the

maximum degree. Vizing showed that it is never more than 4 (G) + 1. A graph is

called class one if χ (G) = 4 (G), and class two if χ (G) = 4 (G) + 1. Determining

which of the two is the case is in general a di�cult problem, but cores can help

somewhat.

Theorem 247. Let G be a graph with D the maximum degree in G of the vertices in

the 1-shell of G. Then

χ1 (G) = max {D,χ1 (C2 (G))} .

Proof. Certainly χ1 (G) ≥ D and since the 2-core of G is contained in G, χ1 (G) ≥

χ1 (C2 (G)).

To show equality, color the 2-core of G with χ1 (C2 (G)) colors. Now color the

1-shell using a construction sequence. Adding an edge adjacent to a boundary vertex

will require an additional color if and only if edges of every color used up to that

point are incident with v. This holds for adding any edge of the 1-shell. Thus we

have equality.

It is not hard to see that every tree is class one. Since the 1-shell is a forest, we

have the following corollary.
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Corollary 248. G is class two⇐⇒ the 2-core of G is class two and4 (G) = 4 (C2 (G)).

Zhou Goufei proved the following result on edge coloring of k-degenerate graphs.

Its proof uses Vizing's adjacency lemma.

Theorem 249. [Goufei 2003 [30]] Every k-degenerate graph with 4 ≥ 2k is class one.

This theorem and Theorem 67 produce the following corollary.

Corollary 250. If G is maximal k-degenerate with n ≥
(
k+2

2

)
, then G is class one.

This implies that almost all maximal k-degenerate graphs are class one. In par-

ticular, this theorem implies that if G is 2-degenerate and 4 (G) ≥ 4, then G is class

one. This raises the question of determining the class of all 2-monocore graphs.

A graph G is overfull if n is odd and m > n−1
2
4 (G). It is easily seen that an

overfull graph is class two. This result and the preceding theorem imply that the

only maximal 2-degenerate graphs of class two are K3 and K4 with a subdivided

edge.

Conjecture 251. A maximal k-degenerate graph is class two if and only if it is overfull.

In consideration of 2-monocore graphs, we can readily limit ourselves to connected

graphs. We saw in Theorem 42 that all 2-monocore graphs can be constructed by a

sequence of operations starting with a cycle. For convenience, we summarize those

operations here.

1a. Add a path of length at least two to a 2-monocore graph.

1b. Add a path of length at least two between two 2-monocore graphs.
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2a. Add a cycle identi�ed at one vertex of a 2-monocore graph.

2b. Add an edge joining a vertex of a cycle and a vertex of a 2-monocore graph.

It is easily seen that even cycles are class one and odd cycles are class two. Any

other 2-monocore graph has maximum degree at least three. If a 2-monocore graph

has maximum degree three and is class two then some operation in its construction

makes it class two and it cannot become class one again. Thus we analyze each of

the operations to determine their e�ect on edge chromatic number. Note that the

vertices where new edges are added must have degree two.

Operation 2a would create a vertex of degree four and so cannot be employed.

Note though that this operation cannot move a graph from class one to class two

since the two edges adjacent to the identi�ed vertex can be colored with whatever

colors are available, and the rest of the cycle needs at most one more color.

Operation 2b could not move a graph from class one to class two since one color is

required for the special edge and at most three are required for the cycle. Operation

1b also cannot move a graph from class one to class two since only two colors are

required for the path and only one each for the edges adjacent to the 2-monocore

graphs.

The most di�cult case is operation 1a. Now if the path added has length at

least three, then whatever colors are available can be used on the edges adjacent to

the existing graph and there will be colors available for the other edges. But if the

path has length two, there may be a con�ict. A con�ict will occur exactly when any

coloring of a class one 2-monocore graph G requires that two vertices of degree two

have the edges incident with them colored with the same two colors. Note that this

means that these two vertices cannot be on a triangle. It may be di�cult to determine

when this last condition occurs, however.

We summarize the above discussion with the following theorem.

Theorem 252. Let G be 2-monocore. If 4 (G) ≥ 4, then G is class one. If 4 (G) = 3,
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then G is class two if and only if any construction using the above operations requires

adding a path of length two between two vertices which must have edges incident with

them colored using the same two colors.

The next corollary follows from the above discussion.

Corollary 253. Any 4-edge-critical graph cannot have adjacent vertices of degree two.

4.3.2 List Coloring

Cores are also useful for other more obscure forms of coloring.

De�nition 254. A list coloring of a graph begins with lists of length k assigned to each

vertex and chooses a color from each list to obtain a proper vertex coloring. A graph

G is k-choosable if any assignment of lists to the vertices permits a proper coloring.

The list chromatic number χl (G), is the smallest k such that G is k-choosable.

We can provide upper and lower bounds for the list chromatic number. (see also

West p. 408, 423 [60])

Theorem 255. We have χ (G) ≤ χl (G) ≤ 1 + Ĉ (G).

Proof. The lower bound holds since the lists could be identical.

For the upper bound, establish a construction sequence for G. If a vertex v has

degree d (v), a list of 1 + d (v) colors guarantees v can be colored. Thus χl (G) ≤

1 + Ĉ (G).
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While the list chromatic number is technically an upper bound for the chromatic

number, it is not useful because it is harder to calculate than the chromatic number.

The theorem implies that for core perfect graphs, the list chromatic number is the

same as the chromatic number.

Corollary 256. Every tree is 2-choosable.

The next corollary follows immediately.

Corollary 257. If G has a 2-core, then χl (G) = χl (C2 (G)).

Erdos, Rubin, and Taylor [1979] [23] characterized 2-choosable graphs. De�ne the

θ-graph θi,j,k to be the graph formed by identifying the endpoints of three paths of

lengths i, j, and k.

Theorem 258. A connected graph G is 2-choosable ⇐⇒ it is a tree or its 2-core is an

even cycle or θ2,2,2k for k ≥ 1.

Thus every 2-monocore graph G that is not an even cycle or θ2,2,2k, k ≥ 1, has

χl (G) = 3. Note the theorem implies that every 2-choosable graph has no 3-core.

This leads to the following corollary.

Corollary 259. If G has a 3-core, then χl (G) = χl (C3 (G)).

This cannot directly be improved, as there is a 4-core with list chromatic number

3. For example, χl (K4,4) = 3. However, it can be improved if we know something

about the clique number.
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Corollary 260. Let k = ω (G). Then χl (G) = χl (Ck−1 (G)).

4.3.3 L(2,1) Coloring

De�nition 261. For nonnegative integers h and k, an L (h, k) coloring c of a graph G

is an assignment of colors (nonnegative integers) to the vertices of G such that if u

and w are adjacent vertices of G, then |c (u)− c (w)| ≥ h while if d (u,w) = 2, then

|c (u)− c (w)| ≥ k.

Hence an L (1, 0) coloring is just a proper vertex coloring. Some e�ort has gone into

the study of L (2, 1) colorings (see Chartrand/Zhang p. 403-410 [16]). Determining

the minimum number of colors required in an L (h, k) coloring is not an interesting

problem, since for h and k both positive, this is just χ (G2). Since this type of coloring

is concerned with the distance between colors, another parameter is of interest.

De�nition 262. For an L (h, k) coloring c of a graph G, the c-span of G is λh,k (c) =

max
u,w∈G

|c (u)− c (w)|. The L-span of G is λh,k (G) = min {λh,k (c)}. We shall denote

λ2,1 (G) by λ (G).

Thus we are interested in the minimum length of an interval containing the colors

used for this type of coloring.

In 1992, Griggs and Yeh showed that if G has maximum degree 4, λ (G) ≤

42 + 24. They further conjectured that λ (G) ≤ 42 for all graphs, and proved this

for graphs of diameter 2. We can prove an upper bound that is generally better.

Theorem 263. If G is a graph with k = Ĉ (G), then λ (G) ≤ Ĉ (G2) + 2Ĉ (G).
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Proof. Color G using a construction sequence. Assign the �rst vertex color 0. Each

vertex v added has at most Ĉ (G) neighbors and at most Ĉ (G2) − Ĉ (G) vertices

distance two away. Thus when assigning a color to v, we must avoid three colors for

its neighbors and one color for each vertex distance two away. Thus we must avoid

at most Ĉ (G2) + 2Ĉ (G) colors for v, so at least one of the Ĉ (G2) + 2Ĉ (G) + 1 colors

between 0 and Ĉ (G2) + 2Ĉ (G) is available, so λ (G) ≤ Ĉ (G2) + 2Ĉ (G).

Note that it is possible to show by an argument similar to that in the theorem

that λ (G) ≤ maxH⊆G (δ (H2) + 2δ (H)). This is may be better than the previous

result since λ (G) ≤ maxH⊆G (δ (H2) + 2δ (H)) ≤ Ĉ (G2) + 2Ĉ (G). For example, for

G = K3 ∪
v
K2, λ (G) = 4, the smaller upper bound is 6, the larger upper bound is 7,

and 42 = 9.

The previous theorem is better than the result of Griggs and Yeh.

Corollary 264. We have Ĉ (G2) + 2Ĉ (G) ≤ 42 + 24. If G is connected with 4 ≥ 2,

then equality holds exactly for regular graphs with girth at least �ve.

Proof. We have Ĉ (G2) ≤ 4 (G2) ≤ 42, so the inequality follows. By Proposition

[#5, Chapter One], if it is an equality, then G is regular. If G has a cycle of length

less than �ve, then some vertex of G has less than 42 neighbors. If G is regular with

girth at least �ve, then every vertex is within distance two of 42 vertices.

We can prove Griggs and Yeh's conjecture for a large class of graphs.

Corollary 265. If Ĉ (G) ≤ 4− 2, then λ (G) ≤ 42.

Proof. Let v have dG (v) = Ĉ (G) ≤ 4 − 2. Then dG2 (v) ≤ 4 (4− 2) = 42 − 24.

Then λ (G) ≤ 42 − 24+ 2 (4− 2) = 42 − 4 < 42.
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Note also that if Ĉ (G) = 4−1, then λ (G) ≤ 42 +4−2. Thus Griggs and Yeh's

conjecture need only be proved for graphs that are regular or 'almost regular'.

The previous theorem is applicable to trees.

Corollary 266. Let T be a tree. Then 4+ 1 ≤ λ (G) ≤ 4+ 2.

Proof. It is easily seen that then λ (K1,4) = 4+1 since every leaf must have a distinct

label and the center vertex must be two away from all of them. Now Ĉ (T 2) = 4, so

T can be colored with a span of at most 4+ 2 colors.

Cores are also useful for still other types of coloring such as harmonious coloring

[22] and 2-tone coloring [6].
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4.4 Arboricity

One common theme in graph theory is splitting a graph into pieces that satisfy some

rule. One example of this is arboricity.

4.4.1 Arboricity

De�nition 267. The vertex-arboricity of a graph a (G) is the minimum number of

subsets that the vertices of G can be partitioned so that the subgraph induced by

each set of vertices is a forest.

This can be seen as a generalization of proper vertex coloring, in which each

subgraph induced by a color class must be empty. It is immediate that a (G) ≤ χ (G).

We seek better bounds for vertex-arboricity.

The following theorem is a restatement of a result of Chartrand and Kronk with

a di�erent proof. See [Chartrand/Lesniak p. 67] [15].

Theorem 268. The vertex-arboricity of a graph G satis�es a (G) ≤ 1 +
⌊

1
2
Ĉ (G)

⌋
.

Proof. Let k = Ĉ (G), and consider a construction sequence for G. The result is

obvious for the trivial graph. Assume the result holds for the �rst r vertices. That is,

the graph so far constructed has a vertex partition that induces at most 1+
⌊

1
2
k
⌋
≤ k+2

2

forests. The next vertex v added is adjacent to at most k existing vertices, so by the

Pigeonhole Principle, there is some (possibly empty) set S of vertices, G [S] a forest,

with v adjacent to at most
⌊
k/
(
k+2

2

)⌋
=
⌊

2k
k+2

⌋
≤ 1 vertex of S. Then G [S ∪ v] is a

forest. Thus the result holds for G by induction.

This bound is computationally easy to compute. This bound is exact whenever
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0 ≤ Ĉ (G) ≤ 3 since any 2-core contains a cycle. The proof of this bound also implies

an algorithm for determining a partition of the vertices of G into at most 1+
⌊

1
2
Ĉ (G)

⌋
sets that induce forests.

Algorithm 269. [Vertex-arboricity Algorithm]

Initialization: Graph G with k = Ĉ (G), a construction sequence, and 1+
⌊

1
2
Ĉ (G)

⌋
sets.

Iteration: Add the next vertex v in the sequence and add it to the smallest set in

which it has at most one neighbor.

Result: The sets partition the vertices of G and induce forests.

It is immediate that a (Kn) =
⌈
n
2

⌉
. Since Ĉ (Kn) = n− 1, this bound is sharp for

arbitrarily large maximum core numbers. This also implies the following.

Proposition 270. Let k = ω (G). Then a (G) ≥
⌈
k
2

⌉
.

As with proper vertex coloring, we may ask what part of a subgraph is essential

to determining its arboricity.

De�nition 271. A graph is critical with respect to vertex-arboricity if a (G− v) < a (G)

for all vertices of G. When the context is clear, we will simply use k-critical to refer

to vertex-arboricity in this section.

Corollary 272. If G has a (G) = k ≥ 2 and is critical with respect to vertex-arboricity,

then G is a (2k − 2)-core.

Proof. If G had no 2k− 2-core, then by the previous theorem, a (G) ≤ k− 1. Suppose

that d (v) ≤ 2k − 3. Then G− v has a vertex partition inducing k − 1 forests, so by
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the Pigeonhole Principle v is adjacent to at most one vertex of one of them. But then

a (G) = k − 1, a contradiction.

Corollary 273. Let k = Ĉ (G). If 0 ≤ k ≤ 4, then a (G) = a (Ck (G)).

Proof. A 2-core has arboricity at least 2, and a 3-shell has arboricity at most 2.

The upper bound in the previous theorem need not be exact. If it is not, then the

maximum core of G must have arboricity smaller than necessitated by the theorem.

For example, if G is complete k-partite, a (G) ≤ k. Thus we may be able to improve

on the previous upper bound if we can determine or at least otherwise bound the

arboricity of the higher cores of G. This corollary is analogous to Theorem 203 on

proper vertex coloring.

Corollary 274. The vertex-arboricity of G satis�es a (G) ≤ max
k

min
(⌊

k+2
2

⌋
, a (Ck (G))

)
.

Proof. Each vertex in core i is adjacent to at most one vertex in one of
⌊
i+2

2

⌋
vertex

sets, and it can be put into one of a (Ck (G)) sets.

We can also consider the analogous question for edge partitions.

De�nition 275. The edge-arboricity, or simply arboricity a1 (G) is the minimum num-

ber of forests into which G can be decomposed.

It is inherent in the de�nitions that a (G) ≤ a1 (G), since for any decomposition of

G into forests, there is a collection of subforests for which each vertex is used exactly
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once. These parameters must be equal when 0 ≤ a1 (G) ≤ 2. The smallest graph for

which they are unequal is G = K5 − e, for which a (G) = 2 and a1 (G) = 3.

We can determine upper and lower bounds for edge-arboricity which are easy to

calculate. The lower bound follows Chartrand and Kronk. See [Chartrand/Lesniak

p. 68] [15].

Proposition 276. The edge-arboricity of G satis�es
⌈

1
2

(
1 + Ĉ (G)

)⌉
≤ a1 (G) ≤

Ĉ (G).

Proof. Let k = Ĉ (G). Now G has a construction sequence so that each vertex has

degree at most k when added. Then at most k edges can be distributed amongst at

most k forests that decompose the graph up to that point. Thus a1 (G) ≤ Ĉ (G).

Let H be the maximum core of G with order n, size m. Then H can be decomposed

into at most a1 (G) forests each with size at most n − 1. Then Ĉ (G) ≤ 2m
n
≤

2(n−1)a1(G)
n

< 2a1 (G). Thus 2a1 (G) ≥ Ĉ (G) + 1, so a1 (G) ≥
⌈

1
2

(
1 + Ĉ (G)

)⌉
.

While this bound is computationally simple, it is not the best possible. The proof

of the previous proposition suggests a stronger result.

Proposition 277. For every nonempty graph G, a1 (G) ≥ max
H⊆G

⌈
m(H)
n(H)−1

⌉
, where the

maximum is taken over all induced subgraphs of G.

Proof. If G decomposes into k forests, then m (G) ≤ k · (n (G)− 1). Hence this

condition applies to any subgraph of G.

In fact, this is an equality.
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Theorem 278. [Nash-Williams 1964] [46] For every nonempty graph G, a1 (G) =

max
H⊆G

⌈
m(H)
n(H)−1

⌉
, where the maximum is taken over all induced subgraphs of G.

This is a di�cult theorem to prove, though a relatively short proof appears in

[Chen, Matsumoto, Wang, Zhang, and Zhang 1994] [17].

While this is in some sense an exact answer to the problem of edge-arboricity,

it requires determining a maximum over all induced subgraphs of a graph, which is

impractical for all but the smallest graphs. We would like to simplify this computation

by reducing the number of subgraphs which must be checked.

De�nition 279. The density of a graph is m
n
. The a-density of a nontrivial graph G is

m
n−1

.

Thus our goal is to �nd the subgraph of a graph with maximum a-density.

Theorem 280. Let H ⊆ G be a subgraph of G with maximum a-density, and k =⌈
1
2
Ĉ (G)

⌉
. Then H ⊆ Ck (G).

Proof. Assume the hypothesis, and to the contrary that H * Ck (G). Let l < k be the

smallest integer such that H has an l-shell. Let n be the order of H, nl = |Sl (H)|,

and r = Ĉ (G). Now the a-density of Cr (G) is at least 1
nr−1

· r·nr

2
> r

2
. But then

mH

nH−1
≥ mH−ml

nH−nl−1

mH (nH − nl − 1) ≥ (mH −ml) (nH − 1)

ml (nH − 1) ≥ mHnl

l · nl · (nH − 1) ≥ r
2

(nH − 1)nl

l ≥
⌈
r
2

⌉
= k

But this is a contradiction.
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Virtually the same argument, replacing nH − 1 with nH , proves the following.

Corollary 281. Let H ⊆ G be a subgraph of G with maximum density, and k =⌈
1
2
Ĉ (G)

⌉
. Then H ⊆ Ck (G).

There may be more than one distinct subgraph with maximum density. If we are

trying to determine the arboricity of a graph, we may only need to �nd some subgraph

with maximum a-density. Hence if Ĉ (G) is even, the following slight improvement is

possible.

Corollary 282. Let j =
⌈

1
2

(
Ĉ (G) + 1

)⌉
. Then there exists a subgraph H ⊆ G of

maximum a-density with H ⊆ Cj (G).

Proof. Let H be a subgraph of maximum a-density, k =
⌈

1
2
Ĉ (G)

⌉
, and r = Ĉ (G).

If H ⊆ Cj (G), we are done, and if r is odd, the result is immediate. Suppose that

H * Cj (G), and r is even. Then H ⊆ Ck (G). Now

mH −mk

nH − nk − 1
≥ mH

nH − 1
⇐⇒ mHnk ≥ mk (nH − 1)⇐⇒ mH

nH − 1
≥ mk

nk
.

But the a-density of H is mH

nH−1
≥ r

2
=
⌈
r
2

⌉
= k, which is at least the density of the

k-shell of G, so the result holds.

Again, virtually the same argument proves the following.

Corollary 283. Let j =
⌈

1
2

(
Ĉ (G) + 1

)⌉
. Then there exists a subgraph H ⊆ G of

maximum density with H ⊆ Cj (G).
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Thus in search of a subgraph of maximum density, we may strip away the relatively

low-numbered shells, since some such subgraph contains none of their vertices. We

may be able to improve on this if we have more information on the density of some

subgraphs of G.

Corollary 284. Let G have a subgraph with a-density r, k = dre, and j = br + 1c.

Then for any subgraph H of maximum a-density, H ⊆ Ck (G), and there exists some

subgraph H ′ of maximum a-density with H ′ ⊆ Cj (G). Corresponding results hold for

density.

These results are best possible. For example, consider the graph G = K2r+1 ∪
Kr=rK1

Kr,s = Kr+(Kr+1 ∪ sK1). Then δ (G) = r, Ĉ (G) = 2r, the density of G is
(2r+1

2 )+rs

2r+1+s
=

r, and the density of its maximum core is
(

2r+1
2

)
1

2r+1
= r. Furthermore, if G =

K2r ∪
Kr=rK1

Kr,s = Kr + (Kr ∪ sK1), then δ (G) = r, Ĉ (G) = 2r− 1, the density of G

is
(2r

2 )+rs

2r+s
= r

(
2r+s−1

2r+s

)
> r − 1

2
for r, s ≥ 1, and the density of its maximum core is(

2r
2

)
1
2r

= r − 1
2
.

This latter graph has a-density r for both itself and its maximum core. However,

for G = K2r−1 ∪
Kr=rK1

K1,r = Kr + (Kr−1 ∪K1), δ (G) = r, Ĉ (G) = 2r − 2, the

a-density of G is
(2r−1

2 )+r

2r−1
= (r − 1) + r

2r−1
> r − 1

2
for r ≥ 1, and the a-density of its

maximum core is
(

2r−1
2

)
1

2r−1
= r − 1.

Beyond these results, we cannot say in general where a subgraph of maximum

density lies. It might be the maximum core, be inside the maximum core, properly

contain the maximum core, or partially overlap the maximum core.

We now consider the arboricity of maximal k-degenerate graphs. This question

has been previously considered by [Patil 1984] [47]. He used Nash-Williams' theorem

to give an existential proof. We provide a much shorter proof. Note that it follows

immediately from Theorem 69 that if G is maximal k-degenerate, then a1 (G) ≤ k.
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The arboricity may be smaller if n is small relative to k.

Theorem 285. Let G be maximal k-degenerate. Then a1 (G) =
⌈
k −

(
k
2

)
1

n−1

⌉
.

Proof. A maximal k-degenerate graph of order n has size m = k · n−
(
k+1

2

)
. Then its

a-density is m
n−1

=
[
k · n−

(
k+1

2

)]
1

n−1
= k +

[
k −

(
k+1

2

)]
1

n−1
= k −

(
k
2

)
1

n−1
. Note that

this function is monotone with respect to n. Now any subgraph of a k-degenerate

graph is also k-degenerate, so this implies that any proper subgraph of G has smaller

a-density. Then by Nash-Williams' theorem, a1 (G) =
⌈
k −

(
k
2

)
1

n−1

⌉
.

It may be possible to provide a constructive proof of this theorem that avoids use

of Nash-Williams' theorem.

Since any graph with Ĉ (G) = k is contained in a maximal k-degenerate graph, this

theorem implies that the bound a1 (G) ≤ Ĉ (G) is sharp for all k. More speci�cally,

for a given k, it is sharp for all n ≥
(
k
2

)
+ 2. For n ≤

(
k
2

)
+ 1, it is not sharp. But this

theorem implies the following easy-to-calculate upper bound.

Corollary 286. Let k = Ĉ (G). Then a1 (G) ≤
⌈
k −

(
k
2

)
1

n−1

⌉
.

For k-monocore graphs, we have the following.

Corollary 287. Let G be k-monocore. Then
⌈
k+1

2

⌉
≤ a1 (G) ≤

⌈
k −

(
k
2

)
1

n−1

⌉
.

We can use the bounds on the size of k-collapsible graphs to show the following.

Corollary 288. Let G be k-collapsible. Then
⌈
k+1

2

⌉
≤ a1 (G) ≤

⌈
k − 1−

((
k−1

2

)
+ 1
)

1
n−1

⌉
.
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Proof. Let G be k-collapsible. The lower bound is the same as in Proposition 276. A

k-collapsible graph of order n has size at most m = (k − 1) · n−
(
k
2

)
+ 1. Then its a-

density is at most m
n−1

=
[
(k − 1) · n−

(
k
2

)
+ 1
]

1
n−1

= k−1+
[
k − 1−

(
k
2

)
+ 1
]

1
n−1

=

k− 1−
((
k−1

2

)
+ 1
)

1
n−1

. Now any proper induced subgraph of G is k− 1-degenerate,

so no subgraph has larger a-density. Thus by Nash-Williams' theorem, the upper

bound holds.

In our e�orts to reduce the number of subgraphs of a graph G that must be checked

to determine its arboricity, we can also bound the orders of the subgraphs. Clearly a

very small subgraph has no chance of achieving the maximum.

Corollary 289. Let G be a graph with k = Ĉ (G) and some subgraph with a-density

d < k. Then any subgraph of maximum a-density has order at least n ≥
(
k
2

)
1

k−d + 1.

Proof. A subgraph H with maximum core number k has maximum a-density when it

is maximal k-degenerate. Thus the order n of H must satisfy k −
(
k
2

)
1

n−1
≥ d. This

is equivalent to k − d ≥
(
k
2

)
1

n−1
, and n ≥

(
k
2

)
1

k−d + 1, so the result follows.

Thus determining the arboricity can be simpli�ed by stripping away small shells

and checking subgraphs of relatively large order. This still appears to be a di�cult

problem, however.

4.4.2 Generalizations to k-Degenerate Graphs

Proper vertex coloring studies partitioning the vertex set of a graph into independent

sets, while vertex arboricity studies partitions that induce forests. We have seen that

0-degenerate graphs are exactly empty graphs, while 1-degenerate graphs are exactly
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forests. Thus it is a natural question to consider partitions of the vertices of a graph

into classes that induce k-degenerate graphs.

De�nition 290. The point partition number ρk (G) is the minimum number of sets into

which the vertices of G can be partitioned so that each set induces a k-degenerate

graph.

Point partition numbers were �rst introduced in 1970 by Lick and White [38] in

the same paper that introduced k-degenerate graphs. It is immediate that χ (G) =

ρ0 (G) ≤ a (G) = ρ1 (G) ≤ ρ2 (G) ≤ . . . ≤ ρk (G) ≤ . . ..

There was a �urry of research on these numbers in the 1970s. A survey of results

up to its writing appears in [Simoes-Pereira 1976] [54]. In their original paper, Lick

and White determined these numbers exactly for complete multipartite graphs. They

also determined an upper bound which we can state in terms of cores, and will prove

by a di�erent means.

Theorem 291. The point partition number ρk (G) of a graph G satis�es ρk (G) ≤

1 +
⌊

1
k+1

Ĉ (G)
⌋
.

Proof. Let d = Ĉ (G), and consider a construction sequence for G. The result is

obvious for the trivial graph. Assume the result holds for the �rst r vertices. That is,

the graph so far constructed has a vertex partition that induces at most 1 +
⌊

d
k+1

⌋
≤

d+k+1
k+1

k-degenerate graphs. The next vertex v added is adjacent to at most d existing

vertices, so by the Pigeonhole Principle, there is some (possibly empty) set S of

vertices, G [S] k-degenerate, with v adjacent to at most
⌊
d/
(
d+k+1
k+1

)⌋
=
⌊
d(k+1)
d+k+1

⌋
≤ k

vertices of S. ThenG [S ∪ v] is k-degenerate. Thus the result holds forG by induction.
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Thus this upper bound implies both the core number bound and the corresponding

bound for vertex-arboricity in Theorem 268. Once again, this bound is computation-

ally easy to compute. This bound is exact whenever 0 ≤ Ĉ (G) ≤ 2k + 1 since any

graph with k + 1 ≤ Ĉ (G) ≤ 2k + 1 is not k-degenerate, but the upper bound is two.

The proof of this bound also implies an algorithm for determining a partition of the

vertices of G into at most 1 +
⌊

1
k+1

Ĉ (G)
⌋
sets that induce k-degenerate graphs.

Algorithm 292. [Point Partition Algorithm]

Initialization: Graph G with d = Ĉ (G), a construction sequence, and 1+
⌊

1
k+1

Ĉ (G)
⌋

sets.

Iteration: Add the next vertex v in the sequence and add it to the smallest set in

which it has at most k neighbors.

Result: The sets partition the vertices of G and induce k-degenerate graphs.

The following result is immediate.

Proposition 293. We have ρk (G) ≥
⌈
ω(G)
k+1

⌉
.

As with proper vertex coloring and vertex-arboricity, we may ask what part of a

subgraph is essential to determining its point partition number.

De�nition 294. A graph is d-critical with respect to ρk if ρk (G− v) < ρk (G) = d for

all vertices of G.

Corollary 295. If G has ρk (G) = d and is critical with respect to vertex-arboricity,

then G is a (k + 1) (d− 1)-core.
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Proof. If G had no (k + 1) (d− 1)-core, then by the previous theorem, ρk (G) ≤ d− 1.

Suppose that d (v) ≤ (k + 1) (d− 1)− 1. Then G− v has a vertex partition inducing

d− 1 k-degenerate graphs, so by the Pigeonhole Principle v is adjacent to at most k

vertices of one of them. But then ρk (G) = d− 1, a contradiction.

Corollary 296. Let d = Ĉ (G). If 0 ≤ d ≤ 2 (k + 1), then ρk (G) = ρk (Cd (G)).

Proof. A k + 1-core has ρk at least 2, and a 2k + 1-shell has ρk at most 2.

The upper bound in the previous theorem need not be exact. If it is not, then the

maximum core of G must have ρk smaller than necessitated by the theorem. Thus we

may be able to improve on the previous upper bound if we can determine or at least

otherwise bound ρk for the higher cores of G. This corollary is analogous to Theorem

203 on proper vertex coloring.

Corollary 297. The number ρk for G satis�es ρk (G) ≤ max
i

min
(⌊

d+i+1
i+1

⌋
, ρk (Ci (G))

)
.

Proof. Each vertex in core i is adjacent to at most k vertices in one of
⌊
d+i+1
i+1

⌋
vertex

sets, and it can be put into one of ρk (Ci (G)) sets.

We can also consider the analogous question for edge partitions.

De�nition 298. The edge-partition number, ρ′k (G) is the minimum number of k-

degenerate graphs into which G can be decomposed.

This de�nition appears in [Simoes-Pereira 1976] [54], which describes it as �little-

investigated�. So far as I can tell, this has not changed. It is inherent in the de�nitions
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that ρk (G) ≤ ρ′k (G), since for any decomposition of G into k-degenerate graphs, there

is a collection of k-degenerate subgraphs for which each vertex is used exactly once.

These parameters must be equal when 0 ≤ ρ′k (G) ≤ 2.

It is also immediate that a1 (G) = ρ1 (G) ≤ ρ2 (G) ≤ . . . ≤ ρk (G) ≤ . . ..

We can determine upper and lower bounds for edge-partition numbers which are

easy to calculate.

Theorem 299. The edge-partition number, ρ′k (G) satis�es
⌈

1
2k

(
1 + Ĉ (G)

)⌉
≤ ρ′k (G) ≤⌈

1
k
Ĉ (G)

⌉
.

Proof. Let d = Ĉ (G). G has a construction sequence so that each vertex has degree

at most d when added. Then at most d edges can be distributed amongst at most⌈
d
k

⌉
k-degenerate graphs that decompose the graph up to that point. Thus ρ′k (G) ≤⌈

1
k
Ĉ (G)

⌉
.

Let H be the maximum core of G with order n, size m. Then H can be decomposed

into at most ρ′k (G) k-degenerate graphs each with size at most k · n −
(
k
2

)
. Then

Ĉ (G) ≤ 2m
n
≤ 2

n

(
k · n−

(
k+1

2

))
ρ′k (G) < 2k · ρ′k (G). Thus 2k · ρ′k (G) ≥ Ĉ (G) + 1, so

ρ′k (G) ≥
⌈

1
2k

(
1 + Ĉ (G)

)⌉
.

While this bound is computationally simple, it may not be the best possible. The

proof of the previous result suggests a stronger result.

Proposition 300. For every nonempty graph G, ρ′k (G) ≥ max
H⊆G

⌈
m(H)

k·n(H)−(k+1
2 )

⌉
, where

the maximum is taken over all induced subgraphs of G.

Proof. IfG decomposes into d k-degenerate graphs, thenm (G) ≤ d·
(
k · n (G)−

(
k+1

2

))
.

Hence this condition applies to any subgraph of G.
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It would be a natural generalization of Nash-Williams' theorem if this were an

equality.

Conjecture 301. [Degenerate Covering Conjecture] Let G be a nonempty graph. Then

ρ′k (G) = max
H⊆G

⌈
m(H)

k·n(H)−(k+1
2 )

⌉
, where the maximum is taken over all induced subgraphs

of G.

It may be possible to generalize the approach of Chen et al [17] to prove this

conjecture.

De�nition 302. A graph is d-critical with respect to ρ′k if ρ
′
k (G− e) < ρ′k (G) = d for

all edges of G.

The following conjectured lemma is analogous to that used by Chen et al.

Conjecture 303. Let G be connected and d-critical with respect to ρ′k, n > 1. Then

for any edge e of G, any decomposition of G− e into d− 1 k-degenerate graphs is a

decomposition into d− 1 maximal k-degenerate graphs of order n.

In fact, these two conjectures are equivalent.

Theorem 304. The degenerate covering conjecture holds if and only if the previous

conjectured lemma holds.

Proof. Assume the Degenerate Covering Conjecture holds, and let G be connected and

d-critical with respect to ρ′k, n > 1. Then G− e decomposes into d− 1 k-degenerate

graphs. So m (G− e) ≤ (d− 1)
(
k · n−

(
k+1

2

))
and m (G) ≥ (d− 1)

(
k · n−

(
k+1

2

))
+
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1. Then both inequalities are equalities, so G − e decomposes into d − 1 maximal

k-degenerate graphs of order n, and the lemma holds.

Assume the conjectured lemma holds and let G be a counterexample to the Degen-

erate Covering Conjecture that minimizes n + m. Now the left-hand side is greater

than the right in the conjecture. Then G is connected with n > 1, and d-critical

with respect to ρ′k. Then m − 1 = m (G− e) =
(
k · n−

(
k+1

2

))
(d− 1). But then

d >

⌈
m

k·n−(k+1
2 )

⌉
=
⌈
d− 1 + 1/

(
k · n−

(
k+1

2

))⌉
= d, which is a contradiction.

Theorem 190 can be reinterpreted to state that the Degenerate Covering Conjec-

ture is true for complete graphs. Thus this conjecture can be considered a potential

generalization of Theorem 190.
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4.5 Planarity

Cores have natural relationships to planar graphs and concepts related to planarity.

We have already seen that if G is planar, Ĉ(G) ≤ 5, and if it has order n < 12, then

Ĉ(G) ≤ 4.

4.5.1 Trees and Triangulations

It is obvious that all trees are planar. There is a related class of graphs for which

planarity is somewhat less obvious. Recall that a k-tree is formed iteratively by

starting with Kk+1 and adding each new vertex adjacent to an existing k-clique.

Proposition 305. Every 2-tree is planar.

Proof. First note that K3 is planar. Each subsequent vertex is added adjacent to two

mutually adjacent vertices, so it can be inserted inside a region that they are on.

It is not the case that every 2-degenerate graph is planar. The 2-degenerate non-

planar graph of smallest order and size is K3,3 with a subdivided edge. The two

maximal 2-degenerate nonplanar graphs of smallest order are both formed from K3,3

by subdividing one edge and adding another edge.

Not every 3-tree is planar. We can characterize exactly which 3-trees are planar.

Proposition 306. A 3-tree G is planar if and only if each triangle of G is used at most

once as the root of a new vertex in some construction sequence of G.

Proof. A 3-tree is constructed beginning with K4. For any triangle, either inside or

outside it there is a vertex adjacent to its three vertices, while the other is a region
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in which a vertex can be placed and made adjacent to the vertices of the triangle.

If G is constructed using each triangle at most once as the root of a new vertex in

its construction sequence, this fact will continue to hold, so G will be planar. If the

same triangle is used twice as the root of two vertices then these vertices, the edges

incident with them, and the vertex that must already be adjacent to the vertices of

this triangle produce a copy of K3,3, so G is nonplanar.

For planar 3-trees, we can state more information.

Proposition 307. Let G be a graph with order n ≥ 4. Then G is a 4-core-free maximal

planar graph ⇐⇒ it is a planar 3-tree.

Proof. If G is a planar 3-tree, then it is 3-degenerate and so 4-core-free. Now G has

size 3n− 6 and is planar, so it is maximal planar.

The result holds for K4. Let G be a 4-core free maximal planar graph of order

more than 4. Then it has a vertex v of degree 3, and G − v is also maximal planar

and a 3-tree. The result holds by induction.

When proving results about planar graphs, proofs are often restricted to maximal

planar graphs. This is because these are a special category of planar graphs, and any

planar graph is a subgraph of a maximal planar graph. Thus for any graph property

una�ected by adding edges, it su�ces to prove it holds in this case.

A maximal planar graph is also called a triangulation. We say that we triangulate

a planar graph when we add edges so that it becomes a triangulation. In general,

there are many ways to do this. We would prefer to triangulate a graph so that it

does not create any relatively large cores, as these create restrictions that are harder

to work with.
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De�nition 308. A planar graph G has a k-core-free triangulation if there exists a graph

H with the same vertex set, G ⊆ H, and H is a triangulation. G has a k-monocore

triangulation if its triangulation is k-monocore.

Any triangulation is a 3-core, while any planar graph is 6-core-free. Thus we will

be interested in 3, 4, and 5-cores.

Proposition 309. Every tree with order at least four has a 3-monocore triangulation.

Proof. Both trees of order four are subgraphs of K4. Every time an edge is added,

make the vertex adjacent to all three vertices of the region that it is inside. The result

is a 3-tree, and hence a triangulation.

This can be extended to larger classes of graphs using an analogous argument.

Corollary 310. Every 2-tree has a 3-monocore triangulation. A graph has a 3-monocore

triangulation ⇐⇒ its 2-core does.

The following conjecture seems reasonable.

Conjecture 311. Every planar 3-core-free graph and planar 3-collapsible graph with

order at least four has a 3-monocore triangulation.

In light of this conjecture, we might wonder if every 4-core-free planar graph has a

3-monocore triangulation. We know that every 4-core-free graph is contained in both

a maximal planar graph, and in a maximal 3-degenerate graph. Furthermore, both a

triangulation and a 3-tree have size 3n−6. But these need not be the same graph. For
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Figure 33: A 4-core-free planar graph with no 3-monocore triangulation.

example, consider the graph formed by starting with an octahedron with triangular

region R. Add a vertex inside R adjacent to its boundary vertices and then delete

an edge of the region. The resulting graph has no 4-core, but has no 3-monocore

triangulation.

We also note the following result.

Proposition 312. If a triangulation has a 4-core, its 4-core is a triangulation.

Proof. If a planar 4-core has a region which is not a triangle, adding a vertex of degree

less than four cannot triangulate the region, so the new graph must still have another

non-triangular region.

4.5.2 Dual Graphs

The dual graph G∗ of a planar graph G has vertices representing the regions of G

and edges of G∗ between regions of G that share an edge. In general, the dual graph
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Figure 34: The self-dual graphs 2K2 + 2K1 and W5.

of a graph is a multigraph, not necessarily a graph. A bridge and minimal 2-edge-cut

in G produce a loop and parallel edges in G∗. To avoid this, we will assume that G

3-edge-connected, and hence a 3-core. In general, the dual graph is not unique, it

depends on the particular embedding of G. However, if G is 3-connected, it has a

unique dual graph.

Proposition 313. At most one of G and G∗ is a 4-core.

Proof. Assume G is a 4-core. Then in G∗, every region has length at least four. Then

4r ≤ 2m, so using Euler's Identity, 8 = 4n−4m+4r ≤ 4n−4m+2m, so m ≤ 2n−4.

But any 4-core has m ≥ 2n, so G∗ is not a 4-core.

A graph is self-dual if G ∼= G∗.

Proposition 314. If G is a nontrivial self-dual graph, then m = 2n− 2, G has at least

four vertices of degree three and at least four triangles.

Proof. If G is self-dual, then n = r, so m = 2n− 2 follows from Euler's formula. This

implies that G has at least four vertices of degree three since G is a 3-core, and these

map to triangles.
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The smallest nontrivial self-dual graph is K4. Indeed, any wheel is self-dual. The

graph 2K2 + 2K1 is self-dual. Perhaps surprisingly, a self-dual graph can have a cut-

vertex. The smallest such graph is K4 ∪
v
K4 = 2K3 +K1. In this case, the two blocks

are both self-dual, but this need not be the case either. In light of the previous result,

we might suspect that a self-dual graph must be 3-monocore. But this is not the case.

Proposition 315. The smallest order of a self-dual graph with a 4-core is 13, and there

are exactly three such graphs of that order.

Proof. The smallest planar 4-core is the octahedron, K2,2,2, which has order 6. In

order to obtain m = 2n − 2, we need four vertices of degree three. But since G is

3-edge-connected, the sum of the degrees in G of the vertices in the 4-core will be at

least three larger than this sum in the subgraph, so we need at least seven vertices of

degree 3. If G has the octahedron as its 4-core, it must also contain Q3 − v, which is

the dual of its interior regions. This cannot have any vertices in common with the 4-

core. Finally, G must have three edges to connect these two subgraphs, corresponding

to the three exterior edges of the octahedron. There are three possibilities. All three

edges can go to one vertex of the octahedron, all three can go to distinct exterior

vertices, or two can go to one and one to another. All three possibilities in fact

produce self-dual graphs.

These three graphs have connectivities 1, 2, and 3. At this point, it isn't hard to

guess that a self-dual graph can contain a 5-core.

Corollary 316. The smallest order of a self-dual graph with a 5-core is 31, and there

are exactly three such graphs of that order.
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Figure 35: Construction of the three self-dual graphs with a 4-core and order 13.

Proof. The smallest planar 5-core is the icosahedron (IC), which has order 12. As

before, in order to obtain m = 2n − 2, we need 19 vertices of degree three. The

dual of the icosahedron is the dodecahedron (DD). If G has IC as its 5-core, it must

also contain DD − v, which is the dual of its interior regions. This cannot have any

vertices in common with the 5-core. Finally, G must have three edges to connect

these two subgraphs, corresponding to the three exterior edges of the octahedron. As

before, there are three possibilities, all of which in fact produce self-dual graphs.

In the examples we have seen, the vertices of the 4-core of a self-dual graph map

to the regions outside the 4-core. It is unclear whether this always happens.

Note also that it is possible to take the dual of a graph on other topological

surfaces. For example, the product of cycles Cm × Cn is 4-regular and it is self-dual

on the torus.

4.5.3 Measures of Nonplanarity

For graphs that are not planar, we have several measures of how nonplanar they
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are.

We �rst note that since the 1-shell of a graph is a forest, we have the following

trivial result.

Proposition 317. A graph G with a 2-core is planar ⇐⇒ its 2-core is planar.

Since planar graphs have been characterized in Kuratowski's Theorem, this does

not improve on existing results.

The crossing number υ (G) of a graph G is the smallest number of crossings with

which it can be drawn in the plane. The genus γ (G) of a graph G is the smallest

genus of a surface on which it can be embedded without crossings. The thickness

θ1 (G) of a graph G is the smallest number of planar graphs into which it can be

decomposed.

The next corollary follows the same reasoning as the previous result.

Corollary 318. If G has a 2-core, υ (G) = υ (C2 (G)), γ (G) = γ (C2 (G)), and θ1 (G) =

θ1 (C2 (G)).

While still easy, this result is not completely trivial since there is no known char-

acterization of graphs with a speci�c positive crossing number or genus or thickness

larger than one.

For crossing number and genus, this cannot be improved, since deleting a vertex

of degree two may eliminate a crossing or reduce the genus. For thickness, we can

push this a bit further.

Proposition 319. If G has thickness at least k, then θ1 (G) = θ1 (Ck+1 (G)).

Proof. The l-shell, l ≤ k can be decomposed into l forests, which are planar.
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The thickness of complete graphs is known, so determining the clique number of

a graph can help to strip away the outer shells that don't a�ect the thickness. Then,

a lower bound such as θ1 (G) ≥
⌈

m
3n−6

⌉
can be employed on the denser part of the

graph.

Conversely, the maximum core number can be used to bound the thickness.

Proposition 320. For a nontrivial graph G, we have θ1 (G) ≤ Ĉ (G).

This does not appear to be a particularly good bound. For example, the small-

est clique with thickness 3 is K9, while the smallest complete bipartite graph with

thickness 3 is K7,7. We can improve this result for some graphs.

Theorem 321. Let G be a k-tree. Then
⌈

1
3
k
⌉
≤ θ1 (G) ≤

⌈
1
2
k
⌉
.

Proof. We have θ1 (G) ≥
⌈

m
3n−6

⌉
=

⌈
k·n−(k+1

2 )
3n−6

⌉
=
⌈
k
3

⌉
.

If k is odd, G is contained in a k + 1-tree, so we assume k is even. Kk+1 can be

decomposed into k
2
unions of cycles, which are planar. Further, given any k vertices

of this clique, it is possible to select k
2
edges, one from each of the cycles (for example,

take parallel chords, one of each possible length). Use a construction sequence for G

and divide the k edges added with a new vertex into k
2
classes of two edges so that

each pair of edges are adjacent to neighboring vertices of some distinct subgraph in

the decomposition. Now this produces a new k + 1-clique.

Consider a k-clique using the new vertex w and k − 1 vertices from the previous

clique. Those vertices must have k−2
2

edges from distinct subgraphs in the decompo-

sition and one vertex v whose mate u was not chosen for the new clique. Then the

edge vw was assigned to the subgraph containing uv, so the new clique contains a
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similar selection of edges. Thus the process of adding a vertex and assigning edges

incident with it to distinct planar subgraphs can continue. This produces subgraphs

that are 'almost' 2-trees (except for the root), and so they are planar analogously.

The upper bound applies to any graph that is contained in a k-tree, such as a

chordal graph with ω (G) = k + 1. This result is best possible for 1 ≤ k ≤ 4, but it

is unclear how good it is for larger values of k. It does not hold for all k-degenerate

graphs, since there are nonplanar 2-degenerate graphs.

Analogous results do not hold for crossing number and genus since given any 2-core

with large crossing number or genus, the graph formed by subdividing every edge is

2-monocore with the same crossing number and genus.

On the other hand, we can bound the maximum core number of graphs of a given

genus, extending the result that if G is planar, Ĉ(G) ≤ 5. The following is adapted

from [White 2001 p. 94] [61].

Proposition 322. Let G have genus γ(G) = k. Then Ĉ (G) ≤ 6 + 12(k−1)
n

.

Proof. Let a = 2m
n

be the average degree of vertices of G. We have 3r ≤ 2m, so

m ≤ 3 (m− r). Now by the generalized Euler Identity, 2 − 2k = n − m + r, so

m ≤ 3 (m− r) = 3 (n+ 2k − 2). If G embeds on Sk, then so does its maximum core

H, so Ĉ (G) = Ĉ (H) = δ (H) ≤ a = 2m
n
≤ 6 + 12(k−1)

n
.

This implies that if G is planar, Ĉ(G) ≤ 5, while if G embeds on the torus,

Ĉ(G) ≤ 6.

We can also consider nonorientable surfaces, for which the Euler identity is n −

m+ r = 2− k, where k is the number of crosscaps.
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Proposition 323. Let G have nonorientable genus γ(G) = k. Then Ĉ (G) ≤ 6+ 6(k−2)
n

.

Proof. Let a = 2m
n

be the average degree of vertices of G. We have 3r ≤ 2m, so

m ≤ 3 (m− r). Now by the generalized Euler Identity, 2 − k = n − m + r, so

m ≤ 3 (m− r) = 3 (n+ k − 2). If G embeds on Nk, then so does its maximum core

H, so Ĉ (G) = Ĉ (H) = δ (H) ≤ a = 2m
n
≤ 6 + 6(k−2)

n
.

This implies that if G embeds on the projective plane, Ĉ(G) ≤ 5.

It is probably possible to bound the maximum core number in terms of the crossing

number, but such a formula is unknown.

4.5.4 Planarity and Coloring

The most famous problem in graph theory involves the coloring of planar graphs.

The core number bound can be applied to this problem, yielding the following corol-

lary.

Corollary 324. [The Six Color Theorem] If G is planar, then χ (G) ≤ 6.

Proof. If G is planar, χ (G) ≤ 1 + Ĉ (G) ≤ 1 + 5 = 6.

This is not the best possible bound. This bound can be reduced to �ve rather

easily by switching colors on chains of vertices. Of course, the famous Four Color

Theorem guarantees that the best possible upper bound is four. While no simple

proof of this theorem has been found in general, it can be proven rather easily for

large classes of graphs. Lick and White observed [38] that using the same argument

as in the Five Color Theorem, it can be shown that any planar 4-degenerate graph is

4-colorable.
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Heawood proved in 1898 [33] that a maximal planar graph with order at least three

is 3-chromatic if and only if every vertex has even degree. Even with this restriction,

we cannot guarantee that such graphs are monocore. For order at least four, any such

graph must be a 4-core. But such a graph may have a 5-core. Consider the graph

whose 5-core is the graph of the Archimedean solid the snub cube. Add vertices

in each of its six regions that are 4-cycles and join them to each of the vertices on

the 4-cycle. The resulting graph is maximal planar, has all even degrees, and is not

monocore.

A graph is outerplanar if it is planar and it has a plane embedding with all its

vertices on a single region. A maximal outerplanar graph is maximal with respect

to being outerplanar, so for order at least three it is a Hamiltonian cycle that has

been triangulated. We can determine additional information on maximal outerplanar

graphs. The following theorem is a strengthened restatement of an existing result

(see [16] page 131).

Theorem 325. Every maximal outerplanar graph with n ≥ 3 is a 2-tree.

Proof. Let G be maximal outerplanar, so its interior regions are triangles. If n = 3,

then G = K3, which is a 2-tree. Suppose n ≥ 4. Take the dual graph G∗ with vertex

v corresponding to the exterior region and let T = G∗− v. Now T is a nontrivial tree

(whose internal vertices have degree 3) since if T had a cycle it would have a vertex

not on the outer region. Then T has at least two end-vertices. In G, these correspond

to triangles with two edges on the exterior region, and hence a vertex of degree 2.

Deleting one of these vertices produces a smaller maximal outerplanar graph, so the

result holds by induction.

This formally justi�es our assertion in the �rst section that maximal outerplanar

graphs are 2-monocore.
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Corollary 326. If G is outerplanar, Ĉ(G) ≤ 2, and χ(G) ≤ 3. If G is maximal

outerplanar with order at least 3, both of these are equalities and G is 2-monocore.

We can characterize the 2-trees that are maximal outerplanar.

Theorem 327. The following are equivalent for a 2-tree T .

1. T is maximal outerplanar with n ≥ 3.

2. T is Hamiltonian.

3. T is constructed using each K2 as a root at most once.

Proof. (1⇒ 2) If T is maximal outerplanar with n ≥ 3, then the outside region forms

a Hamiltonian cycle.

(2⇒ 3) Suppose T is constructed using some K2 as a root more than once. Then

deleting that K2 produces at least three components since this is true when the

vertices using this root are �rst added and any other vertex added cannot reduce the

number of components of T −K2. Thus T is not Hamiltonian.

(3⇒ 1) Suppose T is constructed using each K2 as a root at most once. If n = 3,

then T = K3, which is maximal outerplanar, has no chords, and no edge has been used

as a root. Assume that any maximal outerplanar graph with order n is constructed

using each chord of the outer cycle as a root exactly once while each edge of the cycle

has not been used as a root. Let T have order n + 1. Then T is constructed by

adding a vertex v adjacent to some previously unused root of T −v, which is maximal

outerplanar by assumption. Then the root is on the outer cycle, and v can be placed

in the exterior region of T − v. The outer cycle of T thus contains the edges incident

with v, the root for v is now a chord of this cycle, and T is maximal outerplanar.

We can also color graphs on other surfaces. In 1890, Heawood proved the following
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upper bound for the chromatic number of graphs that embed on surface Sk. This proof

follows [[16] p. 218].

Theorem 328. [Heawood Map Coloring Theorem Upper Bound] Let G be a graph that

embeds on surface Sk, k > 0. Then

χ (G) ≤
⌊

7 +
√

1 + 48k

2

⌋
.

Proof. Let G be a graph that embeds on surface Sk, k > 0, with maximum core H with

order n and size m. Let h = 7+
√

1+48k
2

, so that 1+48k = (2h− 7)2 and h = 7+ 12(k−1)
h

.

Now χ (G) ≤ 1 + Ĉ (H) ≤ h if n ≤ h, so suppose n > h. By Proposition 322,

χ (G) ≤ 1 + Ĉ (H) ≤ 1 + 6 +
12 (k − 1)

n
≤ 7 +

12 (k − 1)

h
= h =

7 +
√

1 + 48k

2
.

Note that the �nal inequality does not hold for the plane (k = 0). Heawood's

formula can also be shown to hold for nonorientable surfaces. It is much more di�cult

to show that it is an equality for every surface except the Klien bottle.

A graph is said to be uniquely colorable if every minimal coloring of it produces

the same partition.

It is easily seen that in a uniquely colorable graph, the subgraph induced by the

union of any two color classes must be connected, since otherwise the colors could be

swapped on one of its components. We can easily describe a large class of uniquely

colorable graphs.

Proposition 329. Let G be a graph with k = χ (G) = ω (G), every vertex contained in

a k-clique, and every pair of k-cliques connected by a chain of k-cliques which overlap

on (k − 1)-cliques. Then G is uniquely colorable.
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Proof. Any minimal coloring of G assigns exactly one vertex of a maximum clique

to each color class. Then there is only one color choice for a vertex whose k-clique

overlaps this one on k − 1 vertices. Since every vertex can be reached in this way, G

is uniquely colorable.

Some speci�c graph classes satisfy these conditions.

Corollary 330. Graphs that are k-trees, 3-colorable maximal planar graphs, and max-

imal outerplanar graphs are uniquely colorable.

Proof. The k-trees satisfy the hypothesis, and maximal outerplanar graphs are 2-trees.

Maximal planar graphs are triangulations, so if such a graph is 3-colorable, it satis�es

the hypothesis.

Chartrand and Geller showed that the only uniquely 3-colorable outerplanar graphs

are maximal outerplanar. [see Chartrand/Zhang p.228-9 [16]] We present a di�erent

proof of this result.

Proposition 331. An outerplanar graph of order at least three is uniquely 3-colorable

⇐⇒ it is maximal outerplanar.

Proof. We have already observed the converse. If G is outerplanar but not maximal, it

has an induced cycle C of length at least four. This cycle is not uniquely 3-colorable.

No component of G − C contains more than two consecutive vertices of C, so there

is more than one distinct coloring of G.
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We might wonder if all uniquely k-colorable graphs satisfy the hypothesis of Propo-

sition 329. This is true when k is 1 or 2, but false in general. In fact, there is a graph

that is not only uniquely 3-colorable but also triangle-free (see [31]).

Chartrand and Geller also proved the following.

Theorem 332. Every uniquely 4-colorable planar graph is maximal planar.

The proof of this theorem implies the following corollary.

Corollary 333. In a uniquely 4-colorable planar graph, the subgraph induced by the

union of any two color classes is a tree.

Proof. The subgraph induced by any two color classes must be connected. The sum

of the sizes of these subgraphs is at least 3n− 6, so all of them have size as small as

possible, that is one less than their order. Thus they are trees.

We already know a class of uniquely 4-colorable planar graphs, namely the 3-trees.

A maximal planar graph with both a 3-shell and a 4-core is uniquely 4-colorable if

and only if its 4-core is uniquely 4-colorable. We o�er the following conjecture.

Conjecture 334. A planar graph is uniquely 4-colorable if and only if it is a 3-tree.

4.5.5 Integer Embeddings

Given a planar graph, we may seek embeddings with other properties. Fary [1948]

[24] proved the following.
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Theorem 335. [Fary's Theorem] Every planar graph has a plane embedding in which

its edges are straight lines.

This can be proven by induction on maximal planar graphs using the observations

that every planar graph is 5-degenerate and that each 3, 4, or 5-gon contains an

interior point that 'sees' each of its vertices.

We can seek straight-line embeddings with further properties.

De�nition 336. An integer embedding of a graph G is a straight-line plane embedding

so that the edges of G have integer lengths. An integer graph is a graph with an

integer embedding.

Kemnitz and Harborth [2001] [36] o�ered the following conjecture.

Conjecture 337. All planar graphs are integer graphs.

Note that for �nite graphs, having an integer embedding is equivalent to having

an embedding with rational edge lengths, since such lengths could be multiplied by

their least common denominator.

Lemma 338. If G is an integer graph, it has an integer embedding where each edge

has length at least l ≥ 1.

Proof. Given an integer embedding of a graph, scaling it by an integer produces another

integer embedding.

It is not surprising that every tree is an integer graph. We prove a somewhat

stronger result.
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Figure 36: An integer embedding of a tree with every edge having length one.

Proposition 339. Every tree has an integer embedding with every edge having length

one.

Proof. Let T be a tree with maximum degree 4 ≥ 2. Choose an angle α, 0 < α < π
2
,

and let β = α
∆
. Choose a vertex v as the root of the tree and suppose it is at the origin.

Place the neighbors of v one unit from it on the lines y = r ·βx, where r is an integer

satisfying 0 ≤ r ≤ d (v) − 1. In general, suppose a vertex u is at (graph) distance d

from v and has neighbor w nearer to v on line y = q · α
4d−1x, 0 ≤ q ≤ 4d−1− 1. Then

place u on the point farther from v which is on the line y =
(
q · α
4d−1 + r · α

∆d

)
x,

0 ≤ r ≤ d (w)− 2, and at distance one from w.

We show that such an intersection point must exist. Let w be at geometric distance

l ≤ d from v. If an arc of length at most one exists between the two lines in question,

then so does a line segment of length at most one. The length of such an arc is

s = l · θ ≤ d α
∆d <

πd
2d+1 < 1, so the intersection must exist. Thus such an embedding

exists.

Since the angle α in the previous proof can be arbitrarily small, we have the

following corollary.

Corollary 340. Let T be a tree with diameter d. Then T has an integer embedding

with every side having length one inside a sector with radius d and any angle α > 0.
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Thus we have the following.

Proposition 341. G is an integer graph ⇐⇒ its 2-core is an integer graph.

Proof. Clearly if G has an integer embedding, any subgraph has such an embedding.

The 1-shell of G is a forest, and each tree can be rooted in a sector with arbitrarily

small angle. If necessary, the 2-core of G can be scaled up to allow the trees to be

appended to it.

To go further, we need the following lemma which is reported in [29]. Its proof

uses advanced techniques in number theory and will not be included. We will state

the lemma somewhat informally.

Lemma 342. If for any placement φ of the vertices of a graph G − v in the plane, φ

can be 'nudged' to a rational embedding, and v is made adjacent to three vertices of

G, two adjacent, then G has a rational embedding.

The following theorem follows the approach of [Geleen/Guo/McKinnon 2008] [29],

extending their result.

Theorem 343. Let G be a planar graph that can be constructed by successively adding

vertices so that when added, each vertex v satis�es one of the following.

1. d (v) ≤ 2

2. d (v) = 3 and v has two adjacent neighbors

3. d (v) = 3 and v has a neighbor x with d (x) ≤ 2

Then G has an integer embedding.
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Proof. Since G is planar, it has a straight-line plane embedding. Construct G using a

construction sequence satisfying the hypothesis. If d (v) = 1, it can be added as in

the previous result. If d (v) = 2, place v at the intersection of two circles with rational

radii, 'close' to its original location in the original embedding. In the second case, the

lemma guarantees that v can be placed arbitrarily close to its original location with

rational side lengths. In the third case, add an edge xy, where y is a neighbor of v

and 'nudge' x so that xy is rational. (Note that xy is allowed to cross other edges.)

Add v using the lemma, and delete xy. Finally, scale the graph so that it has integer

side lengths.

Corollary 344. If given a plane embedding of G, its 3-core can be 'nudged' to a rational

embedding, then G has an integer embedding.

Note the di�erence between this corollary and Proposition 341. In the proposition,

we start with any integer embedding and append the 1-shell to it, while in this

case, we start with a straight-line embedding and manipulate it to obtain an integer

embedding. A vertex of degree two may not be able to be added for a given embedding.

It is unknown whether there is a graph such that every rational embedding forbids

such a vertex from being added.

We can describe several graph classes that have integer embeddings.

Corollary 345. If G is 2-degenerate, 3-collapsible, a planar 3-tree, or a planar chordal

graph, it is an integer graph.

Proof. If G is 2-degenerate, every vertex of a construction sequence satis�es the �rst

condition. If G is 3-collapsible, all but the last vertex of a construction sequence

satisfy the �rst condition and the last satis�es the third condition. If G is a 3-tree,

it is maximal planar so every vertex of a construction sequence beyond the initial
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Figure 37: An integer embedding of K4.

K4 satis�es the second condition. If G is a planar chordal graph, it has a simplicial

elimination ordering, so it has a construction sequence where every vertex satis�es

one of the three conditions.

Note that this theorem is purely existential. It does not provide a way to �nd a

valid location for the vertex being added. Thus there is still a problem of determining

integer embeddings for speci�c graphs. Pythagorean triples prove helpful in some

cases.

For example, consider the smallest 3-core, K4. Place points A = (12, 0), B =

(−12, 0), C = (0, 5), and D = (0, 9) in the plane. Then this embedding has side

lengths AB = 24, AC = 13, AD = 15, BC = 13, BD = 15, and CD = 4, so it is an

integer embedding.

Pythagorean triples can also be used to show that classes of 3-cores such as wheels

are integer graphs.
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4.6 Domination

4.6.1 Domination

A set of vertices of a graph is a dominating set if each vertex of G is either in the

set or adjacent to a vertex in the set. The domination number of a graph γ (G) is

minimum size of a dominating set. See [32] for background. (Note that the notation

γ (G) was also used for genus. In this section, it refers only to domination number.)

Note that any isolated vertex must be contained in a dominating set. Hence we

have the following result.

Proposition 346. Let n0 be the number of isolated vertices of a graph. Then γ (G) =

n0 + γ (C1 (G)).

The domination number of a graph sums over its components, so we will typically

assume in this section that graphs are connected. The following theorem provides

bounds on the domination number for all k-cores.

Theorem 347. [13] [14] Let G be a k-core. Then γ (G) ≤
[
1− k

(
1

k+1

)1+ 1
k

]
n.

This is slightly better than the upper bound γ (G) ≤ 1+ln(k+1)
k+1

n (see [1]). Using

L'Hôpital's rule, it can be shown that the fractions of n in the theorem go to 0 as

k →∞. The bounds provided by the theorem are not sharp for positive small k. For

k = 1, it gives γ (G) ≤ .75n. Any connected graph has a spanning tree and either

partite set is a dominating set. This implies the following result.

Proposition 348. Let G be a 1-core. Then γ (G) ≤ 1
2
n.
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The extremal graphs for this bound have been characterized by [48]. The corona

of a graph G is formed by adding a pendant edge adjacent to each vertex of G. We

present a di�erent proof.

Theorem 349. Let G be a connected 1-core. Then γ (G) = 1
2
n if and only if G = C4

or G is the corona of a graph.

Proof. It is easily seen that these graphs have the given domination number, since in

a corona either a vertex or its copy must be in the dominating set. Let γ (G) = 1
2
n,

so n is even and the result is obvious for n = 2. Since domination number is not

reduced by deleting edges, consider a spanning tree T attaining the bound. For

n > 2, T has a minimum dominating set containing no leaves since any leaf could be

replaced by its neighbor. If any leaves of T have a common neighbor, then deleting

one produces a contradiction. If T has an internal vertex not adjacent to a leaf then

deleting leaves and their neighbors produces a forest with every isolated vertex and

leaf already dominated, so the bound is not attained. Thus T is the corona of some

other tree. Adding an edge between a leaf and non-leaf of T produces a graph with

another spanning tree that is not a corona, and so does adding an edge between two

leaves unless T = P4 and G = C4.

For 2-cores, the following sharp upper bound was obtained by McQuaig and Shep-

herd [42]. They also characterized the extremal graphs.

Theorem 350. Let G be a connected 2-core. With the exception of seven graphs,

γ (G) ≤ 2
5
n. The seven graphs are C4, C4∪

v
C4, C7, and four graphs formed by adding

chords to C7.
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It has been conjectured (see [32]) that for k-cores, γ (G) ≤ k
3k−1

n. Reed [51]

proved that for 3-cores, γ (G) ≤ 3
8
n. Sohn and Xudong [55] proved that for 4-cores,

γ (G) ≤ 4
11
n, and claim that they have proved it for 5 and 6. For k ≥ 7, it is

worse than Theorem 347. Presuming that Sohn and Xudong are correct, we have the

following corollary.

Corollary 351. Let nk be the number of vertices in the (non-proper) k-shell of G and

suppose the 2-shell of G has no component being one of the exceptional graphs in

Theorem 350. Then

γ (G) ≤ n0 +
6∑

k=1

k

3k − 1
nk +

∞∑
k=7

[
1− k

(
1

k + 1

)1+ 1
k

]
nk.

How good a bound this is will depend on the graph. It depends on a construction

that dominates every boundary vertex at least twice, so it will tend to be worse when

the boundaries are larger.

We may improve this bound with more information on the structure of the shells.

Since the 2-core and 1-shell decompose a nontrivial connected graph, we consider

domination of trees. There is a straightforward algorithm to determine the domina-

tion number of a tree. We �nd the following de�nition convenient.

De�nition 352. The depth of a vertex v in a tree T is the minimum distance between

v and an end-vertex of T.

It is immediate that for a vertex v of a tree, 0 ≤ depth (v) ≤ e (v), the eccentricity of

v. Further, depth (v) = 0 exactly for end-vertices, depth (v) = 1 exactly for neighbors

of end-vertices, and depth (v) = e (v) exactly when v is equidistant from each end-

vertex. When this �nal condition holds, v is the unique central vertex of the tree,
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but note that vertices with high eccentricity can have low depth. For example, in the

corona of any tree, the maximum depth is 1.

It is also immediate that for any vertex v of a tree, all its neighbors have depth

within one of v.

Proposition 353. Let v be a vertex of a tree. Then depth (v) + e (v) ≤ diam (T ).

Proof. Let u be an end-vertex of T with minimum distance to v and P be a path of

maximum length through u and v ending at end-vertex w. The length of the v-w

subpath is at least e (v). Then depth (v) + e (v) ≤ length (P ) ≤ diam (T ).

This bound is sharp for all vertices of paths, stars, and double stars.

Corollary 354. We have the following chains of inequalities.

0 ≤ depth (v) ≤ 1

2
(depth (v) + e (v)) ≤ 1

2
diam (T ) ≤ radius (T )

0 ≤ depth (v) ≤ max depth (T ) ≤ 1

2
diam (T ) ≤ radius (T )

Conjecture 355. For all vertices of any tree T, max depth (T ) ≤ 1
2

(depth (v) + e (v)).

The algorithm for domination of a tree is based on the observation that for any tree

of at least three vertices, no end-vertex need be contained in a minimal dominating

set of a tree, because if it is, it could be replaced by its neighbor. The algorithm

allows for rooted trees, in which case we do not consider the root to be an end-vertex.

Algorithm 356. [Domination of a Rooted Tree]
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Input T with root v.

If T is K1 or K2, assign a vertex to the dominating set D and stop.

Else

Label all depth 0 and 2 vertices as dominated.

Add all depth 1 vertices to D.

Let T' be the subtree formed by deleting all depth 0 and 1 vertices and iteratively

deleting all end-vertices labeled as dominated.

If T' is not null, run the algorithm on T'.

Proposition 357. This algorithm produces a minimum dominating set for the tree T.

Proof. No end-vertex need be in D provided that it is adjacent to a depth 1 vertex,

which may be adjacent to more vertices. No depth 2 vertex which is an end-vertex

when depth 0 and 1 vertices have been deleted need be in D. Thus the algorithm

makes the ideal choice at each step, and it clearly produces a dominating set.

The proof implies that each tree with at least three vertices has a minimum dom-

inating set containing all depth 1 vertices. One might think that we could produce a

minimum dominating set by adding all vertices of depth 3r + 1, as well as the maxi-

mum depth if it is a multiple of three. But while this will produce a dominating set,

it need not be minimum.

Combining the 2-core and 1-shell produces a good estimate of the domination

number of a graph.

Corollary 358. Let G be a graph with a 1-shell composed of rooted trees Ti with dom-

ination numbers γ (Ti). Let r' be the number of roots or vertices adjacent to roots
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Figure 38: In this tree T, γ (T ) = 4 and any minimum dominating set contains v, which
has depth 2.

contained in dominating sets Di produced by the algorithm. Then

γ (C2 (G)) +
∑

γ (Ti)− r′ ≤ γ (G) ≤ γ (C2 (G)) +
∑

γ (Ti)

In particular, if no component of the 2-core is one of the seven graphs in Theorem

350, then γ (G) ≤ 2
5
|C2 (G)|+

∑
γ (Ti).

Proof. The algorithm optimally dominates the 1-shell, possibly overlapping the 2-core,

producing an overestimate of the domination number. Removing the vertices in or

dominating part of the 2-core produces an underestimate. The �nal bound follows

from Theorem 350.

Note that in some cases, the process used to produce minimum dominating sets

can be extended to the 2-shell. If the root must be in the dominating set, we may be

able to determine other vertices in the set optimally. The same holds if neighboring

roots have neighbors in the minimum dominating sets.

This points out an interesting contrast between vertex coloring and domination.

In both cases, we have employed the decomposition of a graph into its 1-shell and

2-core. But when coloring, the trees of the 1-shell are simply annoying appendages

to be lopped o� toward determining the chromatic number. In contrast, the trees
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Figure 39: In these cases, we may optimally extend the minimum dominating set into
the 2-shell.

provide a cornerstone upon which to build the foundation of an optimal dominating

set, greatly reducing the number of possible dominating sets that need to be checked.

4.6.2 Total Domination

The techniques employed in this section can likely be applied to yield similar results

for other forms of domination, such as total domination.

In a total dominating set, each vertex is adjacent to some vertex in the set. The

total domination number of a graph γt (G) is the minimum size of a total dominating

set. The de�nition immediately implies that the total dominating set is a dominating

set with no isolated vertices. The total domination number is de�ned exactly for

graphs without isolated vertices.

This basic upper bound is due to Cockayne, Dawes, and Hedetniemi [18]. We

present a much shorter proof.

Theorem 359. Let G be a connected graph with n ≥ 3. Then γt (G) ≤ 2
3
n.

Proof. Let T be a spanning tree of G and v be a leaf of T. Label each vertex of T with

its distance from v mod 3. This produces three sets that partition the vertices of G.

Then some set contains at least one third of the vertices of G, and the union S of the

other two contains at most two thirds of the vertices. Each internal vertex of T is
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adjacent to a vertex in each of the other sets. If S contains an isolated leaf, replace

it with its neighbor. Then S is a total dominating set.

The graphs for which γt (G) =
⌊

2
3
n
⌋
have been characterized by [12]. We present

a short proof for when γt (G) = 2
3
n. A brush is a graph formed by starting with some

graph G and identifying a leaf of a copy of P3 with each vertex of G.

Theorem 360. Let G be a connected graph with n ≥ 3. Then γt (G) = 2
3
n exactly when

G is C3, C6, or a brush.

Proof. It is easily seen that the stated graphs are extremal, since in a brush each depth

1 vertex and a neighbor must be in the total dominating set. Let γt (G) = 2
3
n so n

is a multiple of 3 and the result is obvious for n = 3. Let T be a spanning tree of

G. For n ≥ 6, T has a minimum total dominating set containing no leaves since any

leaf could be replaced by a corresponding depth 2 vertex. If any leaves of T have a

common neighbor, then deleting one produces a contradiction.

If T has leaves v1 and v2 with neighbors u1 and u2 with common neighbor w, then

u1, u2, and w are contained in a minimum total dominating set. Then deleting v1,

u1, and v2 from T and u2 from the total dominating set produces a contradiction.

Suppose that deleting all depth 1 vertices of degree 2 and their neighbors produces

a forest F. Then any isolated vertex and at least one leaf of each nontrivial component

of F are already dominated, so T cannot achieve the upper bound, and so F does not

exist. Thus T is a brush. Adding an edge between depth 2 vertices does not change

this. But adding any other edge produces a spanning tree that is not a brush unless

T = P6 and G = C6.

Upper bounds for total domination number of k-cores are summarized in Table 8

from [34].
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k Bound Conditions

1 2
3
n G connected, n ≥ 3

2 4
7
n G connected, not C3, C5, C6, C10

3 1
2
n

4 3
7
n

large 1+ln k
k

n

Table 8: Upper bounds for total domination number.

Hence it is possible to construct results analogous to Corollaries 351 and 358 and

Algorithm 356.
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4.7 The Reconstruction Conjecture

The Reconstruction Conjecture states that for each graph G with order at least

three, G can be determined up to isomorphism from its vertex-deleted subgraphs, the

n subgraphs of G formed by deleting one vertex from G.

This is one of the most famous unsolved problems in graph theory. Toward proving

this conjecture, one can prove that a particular property of a graph is recognizable,

that is, whether G has its property can be determined from its vertex deleted sub-

graphs. One can also prove that a particular class of graphs is reconstructible, that

all graphs in that class can be reconstructed.

It is straightforward to show that the degree sequence of a graph is recognizable.

Several properties related to cores are recognizable.

Theorem 361. The property of having a k-core is recognizable. In particular, G has a

k-core ⇐⇒ either for some vertex v G− v has a k-core, or δ (G) ≥ k.

Proof. (⇒) Let G have a k-core. If G is not the entire k-core, then G − vi has a

k-core for some vi. If G is the entire k-core, then δ (G) ≥ k, which is known to be

recognizable.

(⇐) Certainly if either of these conditions hold, G has a k-core.

Corollary 362. The order and size of the k-core are recognizable, and if G is not

k-monocore, the structure of its k-core can be exactly determined..

Proof. We may assume G has a k-core. Let G have order n and size m. If δ (G) ≥ k,

then G is a k-core with order n and size m. If not, then there is a vertex v of G not

in the k-core of G. Then Ck (G) ⊆ G− v. Thus the k-core of G is the largest k-core

of its vertex deleted subgraphs.
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Corollary 363. The order of the proper k-shell and size of the k-shell of G are recog-

nizable.

Conjecture 364. The orders of the k-shell and k-boundary are recognizable.

Corollary 365. The property of a graph being k-monocore is recognizable.

Proof. The properties of having a k-core and not having a k+ 1-core are recognizable.

Corollary 366. The property of a graph being maximal k-degenerate in recognizable.

Proof. A graph G is maximal k-degenerate if and only if it is k + 1-core-free and has

size k ·n−
(
k+1

2

)
. Both of these properties are recognizable. Hence so is being maximal

k-degenerate.

Corollary 367. The property of being k-collapsible is recognizable.

Proof. Let G be monocore. Then G is collapsible ⇐⇒ G − v has no k-core for all

vertices v of G.

It is known that regular graphs are reconstructible. In fact, we can show that a

larger class of graphs containing connected regular graphs is reconstructible.

Theorem 368. All k-core-critical graphs are reconstructible.
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Proof. Let G be k-core-critical. Then it contains a vertex v with d (v) = l ≥ k adjacent

only to vertices of degree k. Then G− v has l vertices of degree k− 1, and the degree

of v can be recognized. Then v must be adjacent to these vertices. Adding v and

making it adjacent to them reconstructs G.

It is unknown whether all maximal k-collapsible graphs are recognizable.

It is known that disconnected graphs are reconstructible. It is also known that

trees are reconstructible. We have seen that the 1-shell of a connected graph that is

not a tree is a union of trees rooted on the 2-core, and that the order of the 1-shell

of a graph is recognizable. Thus the following modest conjecture seems plausible.

Conjecture 369. If G has a 1-shell, then it is reconstructible.
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5 Conclusion

This dissertation began at the end of summer 2008. My advisor, Dr. Allen

Schwenk, suggested three problems to me as potential research projects, of which

studying k-cores was the �rst. I read the Wikipedia article that he gave to me and

looked up some references. I quickly whipped up some mostly trivial results, some of

which appear in the introduction, and gave two talks on the subject that fall. Over

Christmas break I worked out some small values of Ramsey core numbers.

The project kept expanding from there. I went wherever my interests took me,

which often meant that I was working on several disparate problems at a time. A

single sentence of my early talk or a single seemingly innocuous theorem in a textbook

would end up turning into a 20-page section. The project ended up going places that

I never expected.

The topic of k-cores started with single paper in 1983 by Steven B. Seidman

entitled Network structure and minimum degree. [53] He proved a few results that

I have mentioned in the introduction. With one major exception, the paper didn't

seem to have much of an impact in pure graph theory. A few other papers cite it, but

its terminology did not become common.

The major exception mentioned above is random graph theory. The k-core was

de�ned inconspicuously in the proof of a theorem toward the end of a 1984 paper

entitled The evolution of sparse graphs by Bella Bollobas. [8] In 1991 it was explored

on its own in a paper entitled Size and connectivity of the k-core of a random graph

by Tomasz �uczak [39] and in a number of subsequent papers. I have not examined

this area closely as I believe that I need additional background before I can contribute

to it.

While we have explored applications of cores within graph theory, they also have

applications outside of mathematics. Seidman brie�y explores social networks in his

paper. Cores have applications in computer science to network visualization [3] [28].
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They also have applications in bioinformatics [2] [4] [63].

Since cores have been little studied in pure graph theory, a major goal of this

dissertation has been to develop a theory of k-cores. Sometimes this means incorpo-

rating existing results into this theory. In some cases I found an existing theorem and

rewrote or reexpressed it in terms of cores. Sometimes I also rewrote or simpli�ed

the proof using cores. In other cases, I unknowingly rediscovered results that had

been found earlier by others. (This is the case for most of the section on maximal

k-degenerate graphs.)

But plenty of other material in this theory of k-cores is, to the best that I can

determine, my original discovery. Incorporated into the theory of k-cores, the original

material sheds new light on the old, previously disparate, results.

Throughout this theory, some persistent themes emerge again and again.

1. The duality between k-cores and k-degenerate graphs.

This is expressed in the fundamental result on cores, the k-core algorithm, which

states that the k-core of a graph can be determined by iteratively deleting vertices

with degree less than k. It implies that the maximum core number and degeneracy of

a graph are equal. It also yields the equivalence of k-degenerate and k + 1-core-free

graphs. The solution to the problem of Ramsey core numbers follows from the fact

that if a factor of a decomposition is not a k-core, then it is k − 1-degenerate.

2. Determining the core structure of graphs.

In the introduction, we determined that a number of common graph classes are

monocore. Along the way we encountered other classes of monocore graphs, including

maximal k-degenerate graphs and minimally k-connected graphs. For some graph

classes, including planar graphs and graphs with genus k, we can only bound which

cores can appear. For other graph classes, such as color-critical graphs and self-dual

graphs, determining information on their core structure was more di�cult. We also

characterized the core structure of graphs formed by using graph operations including

the Cartesian product, the join, and the line graph.
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3. The quantity f (k, n) = k ·n−
(
k+1

2

)
is the size of a maximal k-degenerate graph

of order n.

This quantity occurs in a number of contexts. It is the size of k-trees, a special class

of maximal k-degenerate graphs. In some situations, it occurs as the size of the graph

Kk+Kn−k. A number of variations occur, including f (k − 1, n) = (k − 1)·n−
(
k
2

)
, the

maximum size of a k-core-free graph. There is f (k − 1, n) + 1 = (k − 1) ·n−
(
k
2

)
+ 1,

the minimum size of a graph guaranteeing a k-core, and also the maximum size of

a k-collapsible graph. For speci�c values of k, f (1, n) = n − 1 is the size of a tree,

f (2, n) = 2n − 3 is the size of a maximal outerplanar graph, a type of 2-tree, and

f (3, n) = 3n − 6 is the size of a maximal planar graph, which can be a 3-tree but

does not have to be.

4. Construction sequences and the core number bound.

A construction sequence provides an ordering of the vertices of a graph that is often

useful. This is particularly so for proper vertex coloring. Greedily coloring a graph

using a construction sequence implies the core number bound χ (G) ≤ 1 + Ĉ (G).

This simple but powerful bound is superior to several other common upper bounds

for the chromatic number. It also can be computed e�ciently (polynomial-time),

while chromatic number is NP-complete.

It has a number of important implications. It helps to simplify the proof of Brooks'

Theorem. It �ts neatly into the coloring chain. It is essential in the proof of the

order/size bound, the Nordhaus-Gaddum Theorem, and the Heawood Map Coloring

Theorem upper bound. Bounds using construction sequences analogous to the core

number bound exist for list coloring, L (2, 1) coloring, 2-tone coloring, arboricity,

point partition numbers, and thickness.

5. A graph decomposes into its 2-core and 1-shell, which is a forest with no trivial

components.

This fact is useful because much is known about trees that is not known about

graphs in general. In proper vertex coloring and list coloring, the 1-shell can be
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easily pruned o� a graph. It is easy to account for in the chromatic polynomial.

In edge coloring and 2-tone coloring, it can easily be accounted for in determining

the relevant chromatic number. These ideas generalize to larger shells for arboricity

and point-partition numbers. The 1-shell is also easily pruned o� for the parameters

of planarity and integer embeddings. In contrast, the 1-shell provides a valuable

approach to �nding an optimal dominating set of a graph.

While this dissertation is in the neighborhood of 200 pages, in some ways I feel like

I have just scratched the surface. In some important areas, only a few basic results

are known so far. There are many conjectures and unsolved problems scattered

throughout this dissertation that I would like to tackle in the future.

There are also several ways in which cores can be generalized. One generalization is

to de�ne analogous concepts for structures related to graphs, including multigraphs

and digraphs. Another generalization is to consider graph properties other than

minimum degree. For graph property p, we could de�ne a (p, k)-core of G to be a

maximal subgraph of G with p (G) ≥ k. Unlike for minimum degree, such a subgraph

may not be unique. Then (p, k)-cores could be studied both in relation to standard

graph properties and in relation to (δ, k)-cores, i. e. just k-cores. One of example of

this that we considered brie�y are edge cores, which occur naturally when considering

line graphs.

I have thoroughly enjoyed researching and writing this dissertation. I studied

graph theory intensely for the past two years and I know far more about it now than

when I started. Even the results that gave me the most grief at the time, including

Theorem 92, Theorem 144, and the still unproven Plesnik's Conjecture were well

worth the e�ort. It is a little sad to see this process end, but I am reassured by the

conviction that there is plenty more to be discovered about the cores of graphs.
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