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Abstract19

Plesnik proved that the edge connectivity and minimum degree are20

equal for diameter 2 graphs. We provide a streamlined proof of this21

fact and characterize the diameter 2 graphs with a nontrivial minimum22

edge cut.23
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Let G be a graph. For S, T ⊆ V (G), let [S, T ] be the set of edges26

with one end in S and the other in T . An edge cut of a graph G is a set27

X = [S, T ], of edges so that G−X has more components than G. The edge28

connectivity λ (G) of a connected graph is the smallest size of an edge cut.29

A disconnected graph has λ (G) = 0. Often we can express an edge cut as30 [
S, S

]
, where S = V (G)− S.31

Denote the minimum degree of G by δ (G). It is well-known that λ (G) ≤32

δ (G), since the edges incident with a vertex of minimum degree form an33
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edge cut. Plesnik proved that this is an equality for diameter 2 graphs. We34

present a shorter proof.35

Theorem 1. [3] If G has diameter 2, then λ (G) = δ (G).36

Proof. Let
[
S, S

]
be a minimum edge cut. Now S and S cannot both have

vertices u and v that are not incident with
[
S, S

]
, for then diam (G) ≥

d (u, v) ≥ 3. Say S has every vertex incident with
[
S, S

]
. Thus |S| ≤∣∣[S, S]∣∣ = λ (G) ≤ δ (G). Each vertex in S is incident with at most |S| − 1

edges in G [S], and so at least δ (G)− |S|+ 1 edges in
[
S, S

]
. Thus

λ (G) =
∣∣[S, S]∣∣ ≥ |S| (δ (G)− |S|+ 1) .

This last expression attains its minimum value of δ (G) when |S| = 1 or37

|S| = δ (G). In both cases we have λ (G) ≥ δ (G), so λ (G) = δ (G). �38

The following corollary follows from the proof of this theorem.39

Corollary 2. [1] If G has diameter 2, then one of the subgraphs on one40

side of a minimum edge cut is either K1 or Kδ(G).41

A trivial edge cut is an edge cut whose deletion isolates a single vertex.42

To study those diameter 2 graphs with a nontrivial minimum edge cut, we43

define the following set of graphs.44

Definition. Let G be the set of graphs that contains the Cartesian product45

Kn
2

�K2, n ≥ 4, and those graphs that can be constructed as follows. Let46

H1 be a graph with order d > 1 and δ (H1) ≥ d− r − 1 and H2 be a graph47

with order r. Add a perfect matching between Kd and H1 and join all the48

vertices of H1 and H2 (see Figure 1).49

Theorem 3. A graph has diameter 2 and contains a non-trivial minimum50

edge cut if and only if it is in set G.51

Proof. (⇐) It is readily checked that a graphG ∈ G has diameter 2, δ (G) =52

d = λ (G), and contains a nontrivial minimum edge cut.53

(⇒) Let G have diameter 2 and contain a non-trivial minimum edge cut54 [
S, S

]
, and let d = δ (G). Then (say) S = Kd, and the order of S is at least55

d. If it is exactly d, then G = Kn
2

� K2. If not, then S contains vertices56

not adjacent to any vertex of Kd. Let H2 be the subgraph induced by these57

vertices and H1 = S−H2. Then each vertex of H2 is adjacent to each vertex58

of H1 since otherwise G would not have diameter 2. Since G has minimum59

degree d, H1 must have minimum degree at least d− r − 1. �60
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Figure 1: A graph in G with d = 3, H1 = P3, and H2 = 2K1.

Corollary 4. If G ∈ G, it has between d and max {n− d, 3d− 1} trivial61

minimum edge cuts.62

Proof. The number of trivial minimum edge cuts is the number of vertices63

of minimum degree. All the vertices of Kd have minimum degree, so this is64

at least d. Now Kn
2

�K2 has n = 2d such vertices. If G is regular, then it65

has at most d + d + (d− 1) vertices since each vertex in H1 has degree at66

least 1 +n (H2). If n (H2) ≥ d then each vertex in H1 has degree more than67

d, so there are at most n− d minimum degree vertices. �68

Corollary 5. All graphs in set G have a single non-trivial minimum edge69

cut except for C4 and C5.70

Proof. Let G ∈ G, so δ (G) ≥ 2. If δ (G) = 2, then C4 and C5 have two and71

five nontrivial edge cuts, respectively. Now C5 + e has a single non-trivial72

minimum edge cut. Let u and v be the vertices in H1. If there are at least73

two vertices in H2, then G has a spanning subgraph with n−4 u−v paths of74

length 2 and one u−v path of length 3. Hence the result holds for δ (G) = 2.75

Let d = δ (G) > 2. Assume the result holds for graphs with minimum76

degree d − 1. Then no nontrivial minimum edge cut separates vertices in77

Kd. Now H = G − Kd has diam (H) ≤ 2 and δ (H) ≥ d − 1. Now H78

is not C4 or C5, so it has at most one nontrivial minimum edge cut. If it79

has such a cut, then there are at least d − 1 vertices on each side of it, so80

n (H2) ≥ d − 2. Then H contains spanning subgraph Kd,n(H2). But this81

graph has no nontrivial minimum edge cut, so neither does H. Then G has82

no other nontrivial minimum edge cut. �83
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Finally, we consider the nature of minimum edge cuts in almost all84

graphs.85

Theorem 6. Almost all graphs have a single minimum edge cut, which is86

trivial.87

Proof. In random graph theory, it is known that almost all graphs have88

diameter 2 [1]. This implies that λ (G) = δ (G) for almost all graphs. Er-89

dos and Wilson [2] showed that almost all graphs have a unique vertex of90

maximum degree. By symmetry, almost all graphs have a unique vertex of91

minimum degree.92

Those graphs with a minimum non-trivial edge cut have the structure93

described in Theorem 3, including at least δ (G) > 1 vertices of minimum94

degree. Hence almost all graphs have a single minimum edge cut, which is95

trivial. �96
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