Discussiones Mathematicae
Graph Theory xx (xxxx) 1-4
Note
MINIMUM EDGE CUTS IN DIAMETER 2 GRAPHS

Allan Bickle
Department of Mathematics
Penn State Altoona
3000 Ivyside Park
Altoona, PA 16601
allanbickle.wordpress.com
AND
Allen Schwenk
Department of Mathematics
Western Michigan University
1903 W. Michigan
Kalamazoo, MI 49008
schwenk@wmich.edu

Abstract

Plesnik proved that the edge connectivity and minimum degree are equal for diameter 2 graphs. We provide a streamlined proof of this fact and characterize the diameter 2 graphs with a nontrivial minimum edge cut.

Keywords: edge connectivity, diameter.
2010 Mathematics Subject Classification: 05C40.

Let G be a graph. For $S, T \subseteq V(G)$, let $[S, T]$ be the set of edges with one end in S and the other in T. An edge cut of a graph G is a set $X=[S, T]$, of edges so that $G-X$ has more components than G. The edge connectivity $\lambda(G)$ of a connected graph is the smallest size of an edge cut. A disconnected graph has $\lambda(G)=0$. Often we can express an edge cut as $[S, \bar{S}]$, where $\bar{S}=V(G)-S$.

Denote the minimum degree of G by $\delta(G)$. It is well-known that $\lambda(G) \leq$ $\delta(G)$, since the edges incident with a vertex of minimum degree form an
edge cut. Plesnik proved that this is an equality for diameter 2 graphs. We present a shorter proof.
Theorem 1. [3] If G has diameter 2, then $\lambda(G)=\delta(G)$.
Proof. Let $[S, \bar{S}]$ be a minimum edge cut. Now S and \bar{S} cannot both have vertices u and v that are not incident with $[S, \bar{S}]$, for then $\operatorname{diam}(G) \geq$ $d(u, v) \geq 3$. Say S has every vertex incident with $[S, \bar{S}]$. Thus $|S| \leq$ $|[S, \bar{S}]|=\lambda(G) \leq \delta(G)$. Each vertex in S is incident with at most $|S|-1$ edges in $G[S]$, and so at least $\delta(G)-|S|+1$ edges in $[S, \bar{S}]$. Thus

$$
\lambda(G)=|[S, \bar{S}]| \geq|S|(\delta(G)-|S|+1) .
$$

This last expression attains its minimum value of $\delta(G)$ when $|S|=1$ or $|S|=\delta(G)$. In both cases we have $\lambda(G) \geq \delta(G)$, so $\lambda(G)=\delta(G)$.

The following corollary follows from the proof of this theorem.
Corollary 2. [1] If G has diameter 2, then one of the subgraphs on one side of a minimum edge cut is either K_{1} or $K_{\delta(G)}$.

A trivial edge cut is an edge cut whose deletion isolates a single vertex. To study those diameter 2 graphs with a nontrivial minimum edge cut, we define the following set of graphs.

Definition. Let \mathbb{G} be the set of graphs that contains the Cartesian product $K_{\frac{n}{2}} \square K_{2}, n \geq 4$, and those graphs that can be constructed as follows. Let H_{1}^{2} be a graph with order $d>1$ and $\delta\left(H_{1}\right) \geq d-r-1$ and H_{2} be a graph with order r. Add a perfect matching between K_{d} and H_{1} and join all the vertices of H_{1} and H_{2} (see Figure 1).

Theorem 3. A graph has diameter 2 and contains a non-trivial minimum edge cut if and only if it is in set \mathbb{G}.

Proof. (\Leftarrow) It is readily checked that a graph $G \in \mathbb{G}$ has diameter $2, \delta(G)=$ $d=\lambda(G)$, and contains a nontrivial minimum edge cut.
(\Rightarrow) Let G have diameter 2 and contain a non-trivial minimum edge cut $[S, \bar{S}]$, and let $d=\delta(G)$. Then (say) $S=K_{d}$, and the order of \bar{S} is at least d. If it is exactly d, then $G=K_{\frac{n}{2}} \square K_{2}$. If not, then \bar{S} contains vertices not adjacent to any vertex of K_{d}. Let H_{2} be the subgraph induced by these vertices and $H_{1}=\bar{S}-H_{2}$. Then each vertex of H_{2} is adjacent to each vertex of H_{1} since otherwise G would not have diameter 2. Since G has minimum degree d, H_{1} must have minimum degree at least $d-r-1$.

Figure 1: A graph in \mathbb{G} with $d=3, H_{1}=P_{3}$, and $H_{2}=2 K_{1}$.

Corollary 4. If $G \in \mathbb{G}$, it has between d and $\max \{n-d, 3 d-1\}$ trivial minimum edge cuts.

Proof. The number of trivial minimum edge cuts is the number of vertices of minimum degree. All the vertices of K_{d} have minimum degree, so this is at least d. Now $K_{\frac{n}{2}} \square K_{2}$ has $n=2 d$ such vertices. If G is regular, then it has at most $d+d+(d-1)$ vertices since each vertex in H_{1} has degree at least $1+n\left(H_{2}\right)$. If $n\left(H_{2}\right) \geq d$ then each vertex in H_{1} has degree more than d, so there are at most $n-d$ minimum degree vertices.

Corollary 5. All graphs in set \mathbb{G} have a single non-trivial minimum edge cut except for C_{4} and C_{5}.

Proof. Let $G \in \mathbb{G}$, so $\delta(G) \geq 2$. If $\delta(G)=2$, then C_{4} and C_{5} have two and five nontrivial edge cuts, respectively. Now $C_{5}+e$ has a single non-trivial minimum edge cut. Let u and v be the vertices in H_{1}. If there are at least two vertices in H_{2}, then G has a spanning subgraph with $n-4 u-v$ paths of length 2 and one $u-v$ path of length 3. Hence the result holds for $\delta(G)=2$.

Let $d=\delta(G)>2$. Assume the result holds for graphs with minimum degree $d-1$. Then no nontrivial minimum edge cut separates vertices in K_{d}. Now $H=G-K_{d}$ has $\operatorname{diam}(H) \leq 2$ and $\delta(H) \geq d-1$. Now H is not C_{4} or C_{5}, so it has at most one nontrivial minimum edge cut. If it has such a cut, then there are at least $d-1$ vertices on each side of it, so $n\left(H_{2}\right) \geq d-2$. Then H contains spanning subgraph $K_{d, n\left(H_{2}\right)}$. But this graph has no nontrivial minimum edge cut, so neither does H. Then G has no other nontrivial minimum edge cut.

Finally, we consider the nature of minimum edge cuts in almost all graphs.

Theorem 6. Almost all graphs have a single minimum edge cut, which is trivial.

Proof. In random graph theory, it is known that almost all graphs have diameter 2 [1]. This implies that $\lambda(G)=\delta(G)$ for almost all graphs. Erdos and Wilson [2] showed that almost all graphs have a unique vertex of maximum degree. By symmetry, almost all graphs have a unique vertex of minimum degree.

Those graphs with a minimum non-trivial edge cut have the structure described in Theorem 3, including at least $\delta(G)>1$ vertices of minimum degree. Hence almost all graphs have a single minimum edge cut, which is trivial.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, (4th ed.). CRC Press, (2005).
[2] P. Erdos and R. J. Wilson, On the Chromatic Index of Almost All Graphs. J. Comb. Th. (B) 23 (1977) 255-257.
[3] J. Plesnik, Critical Graphs of a Given Diameter. Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975), 71-93.

