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Abstract19

Plesnik proved that the edge connectivity and minimum degree are20

equal for diameter 2 graphs. We provide a streamlined proof of this21

fact and characterize the diameter 2 graphs with a nontrivial minimum22

edge cut.23
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Let G be a graph. For S, T ⊆ V (G), let [S, T ] be the set of edges26

with one end in S and the other in T . An edge cut of a graph G is a set27

X = [S, T ], of edges so that G−X has more components than G. The edge28

connectivity λ (G) of a connected graph is the smallest size of an edge cut.29

A disconnected graph has λ (G) = 0. Often we can express an edge cut as30 [
S, S

]
, where S = V (G)− S.31

Denote the minimum degree of G by δ (G). It is well-known that32

λ (G) ≤ δ (G), since the edges incident with a vertex of minimum degree33
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form an edge cut. Plesnik proved that this is an equality for diameter 234

graphs. We present a shorter proof.35

Theorem 1. [3] If G has diameter 2, then λ (G) = δ (G).36

Proof. Let
[
S, S

]
be a minimum edge cut. Now S and S cannot both have

vertices u and v that are not incident with
[
S, S

]
, for then diam (G) ≥

d (u, v) ≥ 3. Say S has every vertex incident with
[
S, S

]
. Thus |S| ≤∣∣[S, S]∣∣ = λ (G) ≤ δ (G). Each vertex in S is incident with at most |S| − 1

edges in G [S], and so at least δ (G)− |S|+ 1 edges in
[
S, S

]
. Thus

λ (G) =
∣∣[S, S]∣∣ ≥ |S| (δ (G)− |S|+ 1) .

This last expression attains its minimum value of δ (G) when |S| = 1 or37

|S| = δ (G). In both cases we have λ (G) ≥ δ (G), so λ (G) = δ (G). �38

The following corollary follows from the proof of this theorem.39

Corollary 2. [1] If G has diameter 2, then one of the subgraphs on one side40

of a minimum edge cut is either K1 or Kδ(G).41

A trivial edge cut is an edge cut whose deletion isolates a single vertex.42

To study those diameter 2 graphs with a nontrivial minimum edge cut, we43

define the following set of graphs.44

Definition. Let G be the set of graphs that contains the Cartesian product45

Kn
2
�K2, n ≥ 4, and those graphs with the following structure. The vertices46

can be partitioned into three sets, S1, S2, and S3. Set S1 induces Kd, S247

has n2 ≤ d vertices, and S3 has n3 vertices, n2 + n3 > d. There are d edges48

joining a vertex of S1 and a vertex of S2 so that each vertex in S1 ∪ S2 is49

incident with at least one edge. All possible edges between S2 and S3 are50

present. There are enough extra edges with both ends in S2 or S3 so that51

δ (G) ≥ d.52

In the examples of graphs in G below, the sets (S1, S2, S3) induce graphs53 (
K3, P3,K2

)
at left and

(
K3,K2,K2

)
at right.54

55
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Theorem 3. A graph has diameter 2 and contains a non-trivial minimum56

edge cut if and only if it is in set G.57

Proof. (⇐) It is readily checked that a graph G ∈ G has δ (G) = d = λ (G),58

and contains a nontrivial minimum edge cut. Each graph G has diameter 259

since each pair of vertices in S1 and S3 has a unique common neighbor.60

(⇒) Let G have diameter 2 and contain a non-trivial minimum edge cut61

X =
[
S1, S1

]
, and let d = δ (G). Then (say) G [S1] = Kd, and the order of62

S is at least d. If it is exactly d, then G = Kn
2

�K2.63

If not, then S contains vertices not adjacent to any vertex of Kd. Let64

S3 be the set of these vertices and S2 = S1 − S3. Then each vertex of S2 is65

incident with at least one edge of X, and each vertex of S1 is incident with66

exactly one edge of X. Then each vertex of S3 is adjacent to each vertex67

of S2 since otherwise some pair of vertices in S1 and S3 will have distance68

more than 2. Since δ (G) = d, there are enough extra edges with both ends69

in S2 or S3 so that each vertex has degree at least d. �70

Corollary 4. If G ∈ G, it has between d and max {n− 1, 3d− 1} trivial71

minimum edge cuts.72

Proof. The number of trivial minimum edge cuts is the number of vertices73

of minimum degree. All the vertices of Kd have minimum degree, so this is74

at least d. Now Kn
2

�K2 has n = 2d such vertices. If G is regular, then it75

has at most d + d + (d− 1) vertices since each vertex in S2 has degree at76

least 1 + |S3|. If |S3| ≥ d then each vertex in S2 has degree more than d, so77

there are at most n− 1 minimum degree vertices. �78

Theorem 5. All graphs in set G have a single non-trivial minimum edge cut79

except for C4 and those constructed as follows. Let a vertex v be adjacent to80

s, d
2 ≤ s ≤ d, vertices each in two copies of Kd, d ≥ 2, and add a matching81

between d− s vertices in each Kd not adjacent to v.82

For d = 2, the three possible graphs in G with more than one non-trivial83

minimum edge cut are C4, C5, and K1 + 2K2.84

Proof. Let G ∈ G, so δ (G) ≥ 2. Let δ (G) = 2 and |S2| = 2. Note that85

C4 and C5 have two and five nontrivial edge cuts, respectively. Now C5 + e86

has a single non-trivial minimum edge cut. Let u and v be the vertices in87

S2. If there are at least two vertices in S3, then G has a spanning subgraph88
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with n − 4 u − v paths of length 2 and one u − v path of length 3. Hence89

the result holds for δ (G) = 2.90

Let δ (G) = 2, |S2| = 1, and v ∈ S2. If there is another nontrivial edge91

cut, it must separate S1 ∪ v from K2 (by Corollary 2). Thus G = K1 + 2K2.92

Let d = δ (G) > 2. Then no nontrivial minimum edge cut separates93

vertices in Kd. Assume there is another nontrivial edge cut X. One com-94

ponent of G − X contains all vertices of S1 and at least one of S2. Thus95

the other component of G−X must be H = Kd by Corollary 2. Now there96

are s ≤ d vertices of H in S3 and d − s vertices of H in S2. If there are r97

other vertices in S2, then X contains at least rs+ s− d ≥ d edges. Equality98

requires r = 1, so let v be the one vertex in S2 − H. Also, each vertex in99

S2− v is adjacent to exactly one vertex of S1. Then v is adjacent to exactly100

s vertices in S1, so s ≥ d
2 . Then G can be contructed as described and has101

exactly two non-trivial minimum edge cuts. �102

Finally, we consider the nature of minimum edge cuts in almost all103

graphs.104

Theorem 6. Almost all graphs have a single minimum edge cut, which is105

trivial.106

Proof. In random graph theory, it is known that almost all graphs have107

diameter 2 [1]. This implies that λ (G) = δ (G) for almost all graphs. Er-108

dos and Wilson [2] showed that almost all graphs have a unique vertex of109

maximum degree. By symmetry, almost all graphs have a unique vertex of110

minimum degree.111

Those graphs with a minimum non-trivial edge cut have the structure112

described in Theorem 3, including at least δ (G) > 1 vertices of minimum113

degree. Hence almost all graphs have a single minimum edge cut, which is114

trivial. �115
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