1	Discussiones	Mathematicae	
1	Discussiones	Mathematicae	

² Graph Theory xx (xxxx) 1–4

3	Note	
4	MINIMUM EDGE CUTS IN DIAMETER 2 GRAPHS	
5	Allan Bickle	
6	Department of Mathematics	
7	University of Tennessee	
8	1331 Circle Park Drive	
9	Knorville. TN 37916	
10	allanbickle.wordpress.com	
11	*	
12	AND	
13	Allen Schwenk	
14	Department of Mathematics	
15	Western Michigan University	
16	1903 W. Michigan	
17	Kalamazoo, MI 49008	
18	schwenk@wmich.edu	
19	Abstract	
20	Plesnik proved that the edge connectivity and minimum degree are	
21	equal for diameter 2 graphs. We provide a streamlined proof of this	
22 23	fact and characterize the diameter 2 graphs with a nontrivial minimum edge cut	
24	Keywords: edge connectivity, diameter.	
25	2010 Mathematics Subject Classification: 05C40.	
	Let C be a graph For $S T \subset V(C)$ let $[S T]$ be the set of ed	
26	Let G be a graph. For $S, I \subseteq V(G)$, let $[S, I]$ be the set of ed	
27	with one end in S and the other in T. An edge cut of a graph G is a	

Let G be a graph. For $S, T \subseteq V(G)$, let [S,T] be the set of edges with one end in S and the other in T. An **edge cut** of a graph G is a set X = [S,T], of edges so that G - X has more components than G. The **edge connectivity** $\lambda(G)$ of a connected graph is the smallest size of an edge cut. A disconnected graph has $\lambda(G) = 0$. Often we can express an edge cut as $[S,\overline{S}]$, where $\overline{S} = V(G) - S$.

³² Denote the **minimum degree** of G by $\delta(G)$. It is well-known that ³³ $\lambda(G) \leq \delta(G)$, since the edges incident with a vertex of minimum degree form an edge cut. Plesnik proved that this is an equality for diameter 2
graphs. We present a shorter proof.

Theorem 1. [3] If G has diameter 2, then $\lambda(G) = \delta(G)$.

Proof. Let $[S,\overline{S}]$ be a minimum edge cut. Now S and \overline{S} cannot both have vertices u and v that are not incident with $[S,\overline{S}]$, for then $diam(G) \geq d(u,v) \geq 3$. Say S has every vertex incident with $[S,\overline{S}]$. Thus $|S| \leq |[S,\overline{S}]| = \lambda(G) \leq \delta(G)$. Each vertex in S is incident with at most |S| - 1 edges in G[S], and so at least $\delta(G) - |S| + 1$ edges in $[S,\overline{S}]$. Thus

$$\lambda(G) = \left| \left[S, \overline{S} \right] \right| \ge \left| S \right| \left(\delta(G) - \left| S \right| + 1 \right).$$

This last expression attains its minimum value of $\delta(G)$ when |S| = 1 or $|S| = \delta(G)$. In both cases we have $\lambda(G) \ge \delta(G)$, so $\lambda(G) = \delta(G)$.

³⁹ The following corollary follows from the proof of this theorem.

⁴⁰ **Corollary 2.** [1] If G has diameter 2, then one of the subgraphs on one side ⁴¹ of a minimum edge cut is either K_1 or $K_{\delta(G)}$.

A trivial edge cut is an edge cut whose deletion isolates a single vertex.
To study those diameter 2 graphs with a nontrivial minimum edge cut, we
define the following set of graphs.

Definition. Let \mathbb{G} be the set of graphs that contains the Cartesian product 45 $K_{\frac{n}{2}} \square K_2, n \ge 4$, and those graphs with the following structure. The vertices 46 can be partitioned into three sets, S_1 , S_2 , and S_3 . Set S_1 induces K_d , S_2 47 has $n_2 \leq d$ vertices, and S_3 has n_3 vertices, $n_2 + n_3 > d$. There are d edges 48 joining a vertex of S_1 and a vertex of S_2 so that each vertex in $S_1 \cup S_2$ is 49 incident with at least one edge. All possible edges between S_2 and S_3 are 50 present. There are enough extra edges with both ends in S_2 or S_3 so that 51 $\delta(G) \geq d.$ 52

In the examples of graphs in \mathbb{G} below, the sets (S_1, S_2, S_3) induce graphs $(K_3, P_3, \overline{K}_2)$ at left and $(K_3, \overline{K}_2, K_2)$ at right.

55

Theorem 3. A graph has diameter 2 and contains a non-trivial minimum edge cut if and only if it is in set G.

Proof. (\Leftarrow) It is readily checked that a graph $G \in \mathbb{G}$ has $\delta(G) = d = \lambda(G)$, and contains a nontrivial minimum edge cut. Each graph G has diameter 2 since each pair of vertices in S_1 and S_3 has a unique common neighbor.

(\Rightarrow) Let *G* have diameter 2 and contain a non-trivial minimum edge cut $X = [S_1, \overline{S}_1]$, and let $d = \delta(G)$. Then (say) $G[S_1] = K_d$, and the order of \overline{S} is at least *d*. If it is exactly *d*, then $G = K_{\frac{n}{2}} \Box K_2$.

If not, then \overline{S} contains vertices not adjacent to any vertex of K_d . Let S_3 be the set of these vertices and $S_2 = \overline{S}_1 - S_3$. Then each vertex of S_2 is incident with at least one edge of X, and each vertex of S_1 is incident with exactly one edge of X. Then each vertex of S_3 is adjacent to each vertex of S_2 since otherwise some pair of vertices in S_1 and S_3 will have distance more than 2. Since $\delta(G) = d$, there are enough extra edges with both ends in S_2 or S_3 so that each vertex has degree at least d.

⁷¹ Corollary 4. If $G \in \mathbb{G}$, it has between d and $\max\{n-1, 3d-1\}$ trivial ⁷² minimum edge cuts.

Proof. The number of trivial minimum edge cuts is the number of vertices of minimum degree. All the vertices of K_d have minimum degree, so this is at least d. Now $K_{\frac{n}{2}} \square K_2$ has n = 2d such vertices. If G is regular, then it has at most d + d + (d - 1) vertices since each vertex in S_2 has degree at releast $1 + |S_3|$. If $|S_3| \ge d$ then each vertex in S_2 has degree more than d, so there are at most n - 1 minimum degree vertices.

Theorem 5. All graphs in set \mathbb{G} have a single non-trivial minimum edge cut except for C_4 and those constructed as follows. Let a vertex v be adjacent to s, $\frac{d}{2} \leq s \leq d$, vertices each in two copies of K_d , $d \geq 2$, and add a matching between d - s vertices in each K_d not adjacent to v.

For d = 2, the three possible graphs in \mathbb{G} with more than one non-trivial minimum edge cut are C_4 , C_5 , and $K_1 + 2K_2$.

Proof. Let $G \in \mathbb{G}$, so $\delta(G) \geq 2$. Let $\delta(G) = 2$ and $|S_2| = 2$. Note that C_4 and C_5 have two and five nontrivial edge cuts, respectively. Now $C_5 + e$ has a single non-trivial minimum edge cut. Let u and v be the vertices in S_2 . If there are at least two vertices in S_3 , then G has a spanning subgraph with n - 4 u - v paths of length 2 and one u - v path of length 3. Hence the result holds for $\delta(G) = 2$.

Let $\delta(G) = 2$, $|S_2| = 1$, and $v \in S_2$. If there is another nontrivial edge 91 cut, it must separate $S_1 \cup v$ from K_2 (by Corollary 2). Thus $G = K_1 + 2K_2$. 92 Let $d = \delta(G) > 2$. Then no nontrivial minimum edge cut separates 93 vertices in K_d . Assume there is another nontrivial edge cut X. One com-94 ponent of G - X contains all vertices of S_1 and at least one of S_2 . Thus 95 the other component of G - X must be $H = K_d$ by Corollary 2. Now there 96 are $s \leq d$ vertices of H in S_3 and d-s vertices of H in S_2 . If there are r 97 other vertices in S_2 , then X contains at least $rs + s - d \ge d$ edges. Equality 98 requires r = 1, so let v be the one vertex in $S_2 - H$. Also, each vertex in 99 $S_2 - v$ is adjacent to exactly one vertex of S_1 . Then v is adjacent to exactly 100 s vertices in S_1 , so $s \geq \frac{d}{2}$. Then G can be contructed as described and has 101 exactly two non-trivial minimum edge cuts. 102

¹⁰³ Finally, we consider the nature of minimum edge cuts in almost all ¹⁰⁴ graphs.

Theorem 6. Almost all graphs have a single minimum edge cut, which is
 trivial.

Proof. In random graph theory, it is known that almost all graphs have diameter 2 [1]. This implies that $\lambda(G) = \delta(G)$ for almost all graphs. Erdos and Wilson [2] showed that almost all graphs have a unique vertex of maximum degree. By symmetry, almost all graphs have a unique vertex of minimum degree.

Those graphs with a minimum non-trivial edge cut have the structure described in Theorem 3, including at least $\delta(G) > 1$ vertices of minimum degree. Hence almost all graphs have a single minimum edge cut, which is trivial.

References

- ¹¹⁷ [1] G. Chartrand and L. Lesniak, *Graphs and Digraphs*, (4th ed.). CRC ¹¹⁸ Press, (2005).
- [2] P. Erdos and R. J. Wilson, On the Chromatic Index of Almost All
 Graphs. J. Comb. Th. (B) 23 (1977) 255-257.
- [3] J. Plesnik, Critical Graphs of a Given Diameter. Acta Fac. Rerum
 Natur. Univ. Comenian. Math. 30 (1975), 71-93.

116