```
Discussiones Mathematicae
Graph Theory xx (xxxx) 1-4
                                Note
MINIMUM EDGE CUTS IN DIAMETER 2 GRAPHS
                    Allan Bickle
                            Department of Mathematics
    University of Tennessee
    1 3 3 1 \text { Circle Park Drive}
        Knoxville, TN 37916
    allanbickle.wordpress.com
                AND
        Allen Schwenk
        Department of Mathematics
        Western Michigan University
            1 9 0 3 ~ W . ~ M i c h i g a n ~
            Kalamazoo, MI 49008
            schwenk@wmich.edu
```


Abstract

Plesnik proved that the edge connectivity and minimum degree are equal for diameter 2 graphs. We provide a streamlined proof of this fact and characterize the diameter 2 graphs with a nontrivial minimum edge cut.

Keywords: edge connectivity, diameter.
2010 Mathematics Subject Classification: 05C40.
Let G be a graph. For $S, T \subseteq V(G)$, let $[S, T]$ be the set of edges with one end in S and the other in T. An edge cut of a graph G is a set $X=[S, T]$, of edges so that $G-X$ has more components than G. The edge connectivity $\lambda(G)$ of a connected graph is the smallest size of an edge cut. A disconnected graph has $\lambda(G)=0$. Often we can express an edge cut as $[S, \bar{S}]$, where $\bar{S}=V(G)-S$.

Denote the minimum degree of G by $\delta(G)$. It is well-known that $\lambda(G) \leq \delta(G)$, since the edges incident with a vertex of minimum degree
form an edge cut. Plesnik proved that this is an equality for diameter 2 graphs. We present a shorter proof.

Theorem 1. [3] If G has diameter 2, then $\lambda(G)=\delta(G)$.
Proof. Let $[S, \bar{S}]$ be a minimum edge cut. Now S and \bar{S} cannot both have vertices u and v that are not incident with $[S, \bar{S}]$, for then $\operatorname{diam}(G) \geq$ $d(u, v) \geq 3$. Say S has every vertex incident with $[S, \bar{S}]$. Thus $|S| \leq$ $|[S, \bar{S}]|=\lambda(G) \leq \delta(G)$. Each vertex in S is incident with at most $|S|-1$ edges in $G[S]$, and so at least $\delta(G)-|S|+1$ edges in $[S, \bar{S}]$. Thus

$$
\lambda(G)=|[S, \bar{S}]| \geq|S|(\delta(G)-|S|+1)
$$

This last expression attains its minimum value of $\delta(G)$ when $|S|=1$ or $|S|=\delta(G)$. In both cases we have $\lambda(G) \geq \delta(G)$, so $\lambda(G)=\delta(G)$.

The following corollary follows from the proof of this theorem.
Corollary 2. [1] If G has diameter 2, then one of the subgraphs on one side of a minimum edge cut is either K_{1} or $K_{\delta(G)}$.

A trivial edge cut is an edge cut whose deletion isolates a single vertex. To study those diameter 2 graphs with a nontrivial minimum edge cut, we define the following set of graphs.

Definition. Let \mathbb{G} be the set of graphs that contains the Cartesian product $K_{\frac{n}{2}} \square K_{2}, n \geq 4$, and those graphs with the following structure. The vertices can be partitioned into three sets, S_{1}, S_{2}, and S_{3}. Set S_{1} induces K_{d}, S_{2} has $n_{2} \leq d$ vertices, and S_{3} has n_{3} vertices, $n_{2}+n_{3}>d$. There are d edges joining a vertex of S_{1} and a vertex of S_{2} so that each vertex in $S_{1} \cup S_{2}$ is incident with at least one edge. All possible edges between S_{2} and S_{3} are present. There are enough extra edges with both ends in S_{2} or S_{3} so that $\delta(G) \geq d$.

In the examples of graphs in \mathbb{G} below, the sets $\left(S_{1}, S_{2}, S_{3}\right)$ induce graphs $\left(K_{3}, P_{3}, \bar{K}_{2}\right)$ at left and $\left(K_{3}, \bar{K}_{2}, K_{2}\right)$ at right.

Theorem 3. A graph has diameter 2 and contains a non-trivial minimum edge cut if and only if it is in set \mathbb{G}.

Proof. (\Leftarrow) It is readily checked that a graph $G \in \mathbb{G}$ has $\delta(G)=d=\lambda(G)$, and contains a nontrivial minimum edge cut. Each graph G has diameter 2 since each pair of vertices in S_{1} and S_{3} has a unique common neighbor.
(\Rightarrow) Let G have diameter 2 and contain a non-trivial minimum edge cut $X=\left[S_{1}, \bar{S}_{1}\right]$, and let $d=\delta(G)$. Then (say) $G\left[S_{1}\right]=K_{d}$, and the order of \bar{S} is at least d. If it is exactly d, then $G=K_{\frac{n}{2}} \square K_{2}$.

If not, then \bar{S} contains vertices not adjacent to any vertex of K_{d}. Let S_{3} be the set of these vertices and $S_{2}=\bar{S}_{1}-S_{3}$. Then each vertex of S_{2} is incident with at least one edge of X, and each vertex of S_{1} is incident with exactly one edge of X. Then each vertex of S_{3} is adjacent to each vertex of S_{2} since otherwise some pair of vertices in S_{1} and S_{3} will have distance more than 2 . Since $\delta(G)=d$, there are enough extra edges with both ends in S_{2} or S_{3} so that each vertex has degree at least d.

Corollary 4. If $G \in \mathbb{G}$, it has between d and $\max \{n-1,3 d-1\}$ trivial minimum edge cuts.

Proof. The number of trivial minimum edge cuts is the number of vertices of minimum degree. All the vertices of K_{d} have minimum degree, so this is at least d. Now $K_{\frac{n}{2}} \square K_{2}$ has $n=2 d$ such vertices. If G is regular, then it has at most $d+d^{2}+(d-1)$ vertices since each vertex in S_{2} has degree at least $1+\left|S_{3}\right|$. If $\left|S_{3}\right| \geq d$ then each vertex in S_{2} has degree more than d, so there are at most $n-1$ minimum degree vertices.

Theorem 5. All graphs in set \mathbb{G} have a single non-trivial minimum edge cut except for C_{4} and those constructed as follows. Let a vertex v be adjacent to $s, \frac{d}{2} \leq s \leq d$, vertices each in two copies of $K_{d}, d \geq 2$, and add a matching between $d-s$ vertices in each K_{d} not adjacent to v.

For $d=2$, the three possible graphs in \mathbb{G} with more than one non-trivial minimum edge cut are C_{4}, C_{5}, and $K_{1}+2 K_{2}$.

Proof. Let $G \in \mathbb{G}$, so $\delta(G) \geq 2$. Let $\delta(G)=2$ and $\left|S_{2}\right|=2$. Note that C_{4} and C_{5} have two and five nontrivial edge cuts, respectively. Now $C_{5}+e$ has a single non-trivial minimum edge cut. Let u and v be the vertices in S_{2}. If there are at least two vertices in S_{3}, then G has a spanning subgraph
with $n-4 u-v$ paths of length 2 and one $u-v$ path of length 3 . Hence the result holds for $\delta(G)=2$.

Let $\delta(G)=2,\left|S_{2}\right|=1$, and $v \in S_{2}$. If there is another nontrivial edge cut, it must separate $S_{1} \cup v$ from K_{2} (by Corollary 2). Thus $G=K_{1}+2 K_{2}$.

Let $d=\delta(G)>2$. Then no nontrivial minimum edge cut separates vertices in K_{d}. Assume there is another nontrivial edge cut X. One component of $G-X$ contains all vertices of S_{1} and at least one of S_{2}. Thus the other component of $G-X$ must be $H=K_{d}$ by Corollary 2. Now there are $s \leq d$ vertices of H in S_{3} and $d-s$ vertices of H in S_{2}. If there are r other vertices in S_{2}, then X contains at least $r s+s-d \geq d$ edges. Equality requires $r=1$, so let v be the one vertex in $S_{2}-H$. Also, each vertex in $S_{2}-v$ is adjacent to exactly one vertex of S_{1}. Then v is adjacent to exactly s vertices in S_{1}, so $s \geq \frac{d}{2}$. Then G can be contructed as described and has exactly two non-trivial minimum edge cuts.

Finally, we consider the nature of minimum edge cuts in almost all graphs.

Theorem 6. Almost all graphs have a single minimum edge cut, which is trivial.

Proof. In random graph theory, it is known that almost all graphs have diameter 2 [1]. This implies that $\lambda(G)=\delta(G)$ for almost all graphs. Erdos and Wilson [2] showed that almost all graphs have a unique vertex of maximum degree. By symmetry, almost all graphs have a unique vertex of minimum degree.

Those graphs with a minimum non-trivial edge cut have the structure described in Theorem 3, including at least $\delta(G)>1$ vertices of minimum degree. Hence almost all graphs have a single minimum edge cut, which is trivial.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, (4th ed.). CRC Press, (2005).
[2] P. Erdos and R. J. Wilson, On the Chromatic Index of Almost All Graphs. J. Comb. Th. (B) 23 (1977) 255-257.
[3] J. Plesnik, Critical Graphs of a Given Diameter. Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975), 71-93.

