
EULER'S FORMULA

The Taylor series centered at 0 for ex, sinx, cosx are as follows.

ex = 1 + x + x2
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All the terms of the Taylor series for ex appear as terms for sine and cosine, except

that some signs are di�erent. It appears that there may be some relationship between the

functions. To account for the signs, we substitute ix into ex, where i =
√
−1 is an imaginary

number. Note that i2 = −1, i3 = −i, i4 = 1, ... We �nd

eix = 1 + ix− x2
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Separating the real and imaginary parts, we see

eix =

(
1− x2

2
+
x4

24
− x6

720
+ ...

)
+ i

(
x− x3

6
+

x5

120
− x7

5040
+ ...

)

Thus we �nd Euler's Formula

eix = cosx+ i sinx

We can interpret x as an angle in the complex plane, so that eix yields points on the unit

circle.

EULER'S IDENTITY Plugging in x = π, we �nd eiπ = −1, or

eiπ + 1 = 0

This is called Euler's Identity. It involves �ve famous numbers:

0, the additive identity

1, the multiplicative identity

π, which comes from the geometry of circles

i, which comes from solving quadratic equations

e, which comes from calculus

The latter three, in particular, come from di�erent branches of mathematics, and it is not

obvious that they should have anything to do with each other. Yet they are all related in

this one fundamental identity. This is an example of beauty in mathematics. One survey of

mathematicians rated Euler's Identity the most beautiful equation in mathematics.



TRIG IDENTITIES Euler's Formula can give us insight into trigonometric identities.

Consider substituting an angle sum x+ y. We �nd

cos (x+ y) + i sin (x+ y) = ei(x+y)

= eixeiy

= (cosx+ i sinx) (cos y + i sin y)

= cosx cos y + cosx · i sin y + i sinx cos y − sinx sin y

= (cos x cos y − sinx sin y) + i (cosx sin y + sinx cos y)

Separating the real and imaginary parts, we see

cos (x+ y) = cosx cos y − sinx sin y

sin (x+ y) = cosx sin y + sinx cos y

These are the angle sum identities for sine and cosine! They can be proved using geometric

arguments, but they are di�cult to remember. Yet they follow immediately from Euler's

formula.

DIFFERENTIAL EQUATIONS Suppose we want to solve a di�erential equation of

the form y′′ + ay′ + by = 0 for all possible solutions y (t). We may suspect that there is a

solution of the form y = ert. Substituting, we �nd r2ert+ arert+ bert = 0, so r2+ ar+ b = 0.

This is the characteristic equation of the di�erential equation. We can factor it to solve for

the roots. If there are two real roots r1 and r2, the general solution is y (t) = Aer1t +Ber2t.

But what if we have a di�erential equation whose characteristic equation has two complex

roots r = a± bi? Such a di�erential equation has the form y′′ − 2ay′ + (a2 + b2) y = 0. How

can we obtain real solutions from the complex solution ea+bi? We use Euler's Formula to see

e(a+bi)t = eatebit = eat (cos bt+ i sin bt) = eat cos bt+ ieat sin bt

It is not hard to check that the real and imaginary parts are both solutions to y′′− 2ay′+

(a2 + b2) y = 0.

Example. The di�erential equation y′′−2y′+5 = 0 has characteristic equation r2−2r+

5 = 0, with roots r = 1± 2i. We have e(1+2i)t = et (cos 2t+ i sin 2t) = et cos 2t+ iet sin 2t, so

the general solution is

y (t) = Aet cos 2t+Bet sin 2t


