
FINDING ZEROS WITH CALCULUS

For many functions, it is possible to �nd the zeros of a function by factoring or other algebraic
means. However, for many other functions, this is di�cult or impossible. Calculus helps to address
this problem.

1 The Intermediate Value Theorem

Theorem. The Intermediate Value Theorem (IVT). If a function f (x) is continuous on [a, b] and
L is between f (a) and f (b), then there is at least one number c ∈ (a, b) with f (c) = L.

Proof. [sketch] For simplicity, we assume L = 0. Let f (a) > 0 > f (b). There is a largest c ∈ (a, b)
such that f (c) ≥ 0. Thus f (x) ≤ 0 on (c, b]. If f (c) > 0, then f (x) > 0 on (c− δ, c+ δ), δ > 0
since f is continuous. This is a contradiction. Thus f (c) = 0.

If we let L = 0, the IVT says that if a continuous function has opposite signs at a and b, then
it has at least one zero in between.
Example. Let f (x) = x5−10x+2. This is a continuous function, and f (0) = 2 and f (1) = −7.

Thus the IVT says it has a zero in (0, 1).
Any polynomial p (x) is continuous at every point of its domain. If p (x) is an odd polynomial

and its leading coe�cient is positive, then limx→∞ p (x) = ∞ and limx→−∞ p (x) = −∞. If the
leading coe�cient is negative, the signs reverse. Either way, sign changes at some point. By the
Intermediate Value Theorem, p (x) must have a zero. This is an important piece of the proof of the
Fundamental Theorem of Algebra, which says that every non-constant polynomial with complex
coe�cients has a complex zero.

The IVT tells us that a zero exists, but not where exactly it is. How can we �nd, or at least
approximate, the zero? We can check the midpoint of the interval a+b

2
. If it is the zero, we are

done. If not, f
(
a+b
2

)
it is either positive or negative. Then the interval [a, b] is divided into two

subintervals
[
a, a+b

2

]
and

[
a+b
2
, b
]
. The function changes sign on exactly one of them. This narrows

down the interval containing the zero. Repeating this process, we have the Bisection Method,
summarized below.

Algorithm. The Bisection Method.
Given a continuous function f (x) and interval [a, b] where f (a) and f (b) have opposite signs,
1. If a+b

2
is the zero, stop.

2. If not, determine on which of the two subintervals
[
a, a+b

2

]
and

[
a+b
2
, b
]
the function changes

signs.
3. Repeat the process using this subinterval.

Example. Let f (x) = x5 − 10x + 2. The results of the Bisection Method are summarized in
the table below. Thus the zero is in

[
3
16
, 7
32

]
.

x 0 1 1
2

1
4

1
8

3
16

7
32

f (x) + - - - + + -

This is called the Bisection Method since the length of the interval is halved with each iteration
of the algorithm. The advantage of the method is that it will always converge to a zero when
applied correctly. The disadvantage is that it is relatively slow to do so. We will see that Newton's
Method below is much faster.



2 Derivatives and Zeros

The IVT can guarantee at least one zero in an interval, but there is no limit to how many zeros
there could be in an interval. For example, sin

(
1
x

)
has in�nitely many zeros in (0, 1). We need a

way to bound how many zeros a function has. We employ Rolle's Theorem.
Theorem. Rolle's Theorem. Let f (x) be di�erentiable on [a, b]. If f (a) = f (b), then there is at
least one point c ∈ (a, b) with f ′ (c) = 0.

The contrapositive of a logical implication P ⇒ Q is notQ ⇒ not P . An implication and its
contrapositive are logically equivalent, that is, they are both true or both false. We will employ
the contrapositive of Rolle's Theorem.

Corollary. Let f (x) be di�erentiable on [a, b]. If f ′ (c) 6= 0 for any c ∈ (a, b), then f (a) 6= f (b).

Thus if the derivative of a function is never zero on an interval, the function has at most one
zero on the interval. Employing another theorem, this can be stated another way.

Corollary. Let f (x) be di�erentiable on [a, b]. If f is increasing (or decreasing) on [a, b], then f
has at most one zero on [a, b].

This should be intuitively reasonable when considering the graph of a function.
Example. Let f (x) = x3+5x+2. Then f ′ (x) = 3x2+5 > 0. Thus f is increasing everywhere,

so it has at most one zero. The IVT shows that there is exactly one zero.

Exercises.

For the equations in 1-3, show that they
a. have at least one solution
b. have at most one solution
1. x3 + 4x− 2 = 0
2. tanx− 1 = 0, x ∈

(
−π

2
, π
2

)
3. cosx = x
4. Use the Bisection Method on the function f (x) = x2 − 2 to �nd an interval with length at

most 1
8
with rational endpoints containing x =

√
2.



3 Newton's Method

We have seen that the Bisection Method converges slowly. Also, it can't be used when there is
no change of signs around a zero, as in f (x) = (x− 2)2. When we can't �nd a zero exactly, we
need a method to approximate it that converges quickly.

We begin Newton's Method with an initial guess x0, hopefully near the zero. Then we �nd the
tangent line to the curve at the point (x0, f (x0)). Then we �nd where the tangent line crosses the
x-axis. We let this x-value be the new estimate x1 and repeat the process.

The tangent line is
y = f (xn) + f ′ (xn) (x− xn)

We set this equal to 0 and solve, obtaining

f ′ (xn) (x− xn) = −f (xn)

xn+1 = x = xn −
f (xn)

f ′ (xn)

This is the formula for Newton's Method.
Example. Newton's Method can be used to �nd approximations for zeros. If we want to

approximate x =
√
2, we need a polynomial with rational coe�cients with this zero. Since x2 = 2,

f (x) = x2 − 2 has
√
2 as a zero. Newton's Method yields

xn+1 = xn −
x2n − 2

2xn
=
xn
2

+
1

xn

We begin with a guess of x0 = 2. Then

x1 = 1 +
1

2
=

3

2

x2 =
3

4
+

2

3
=

17

12

x3 =
17

24
+

12

17
=

577

408

We can continue this process inde�nitely, but the arithmetic becomes increasingly tedious. Using
a calculator would be productive here. We can make the iteration of Newton's Method simple as
follows. First, enter the initial guess. Then enter the formula for Newton's Method applied to
the speci�c function f , with the previous answer command ANS in place of the variable. For
the previous example, enter ANS/2+1/ANS. Then hitting enter produces the next estimate, and
hitting enter repeatedly produces a sequence of estimates. This produces

n estimate xn
0 2
1 1.5
2 1.416666667
3 1.414215686
4 1.414213562
5 1.414213562

The last two estimates should not be exactly equal, but they are so close that the calculator
rounds them identically. Newton's Method has converged to a zero. Indeed,

√
2 = 1.414213562....

We see that Newton's Method converged quickly in this example. It took only �ve iterations



to achieve nine digits of accuracy. Indeed, this is usually the case.
Let f (x) be a function with f ′′ continuous, f (a) = 0, and f ′ (a) 6= 0. If Newton's Method starts

�close enough� to a, then the number of accurate digits of the approximation will roughly double.
Newton's Method usually works well and converges quickly to a zero. However, there are a

number of things that can go wrong in unusual cases. The following functions and initial values
provide a number of interesting examples to investigate.

Function Initial Value(s) What Goes Wrong?

y = (x− 1)2 + .01 x0 = .5 no zero
y = x2 − x x0 = .5 horizontal tangent
y = 3
√
x x0 = 1 diverges

y =
√
|x| x0 = r > 0 oscillates

y = sinx x0 = 2, 1.8, 1.6 converges to wrong zero
y = arctanx x0 = 1.39, 1.4 too far away

y = 4x2

1+4x2
− .16 x0 = 1, 1 + ε, 1− ε chaotic near x = 1

y = (x− 1)40 x0 = 2 converges slowly, gets stuck
y = π + 2x sin π

x
x0 = .5 converges, but no zero

Exercises.

Apply Newton's Method to the following functions with the given starting values. Do one
iteration by hand, then use a calculator.

5. f (x) = x2 − 3, x0 = 3
6. f (x) = x5 − 10x+ 2, x0 = 1
7. f (x) = tan x, x0 = 3
8. f (x) = 2x− tanx, x0 = 1


