
GROWTH RATES OF SEQUENCES

Many functions or sequences go to in�nity when their input goes to in�nity. We have seen that n2, lnn, and 2n

all diverge to in�nity. We often need to know how fast a sequence grows. One way to do this is to calculate many
terms of the sequences and compare them.

n n2 lnn 2n

1 1 0 2

10 100 2.303 1024

100 10000 4.605 ≈ 1030

1000 1000000 6.908 ≈ 10301

10000 108 9.210 ≈ 103010

100000 1010 11.513 ≈ 1030103

1000000 1012 13.816 ≈ 10301030

10000000 1014 16.118 ≈ 103010300

100000000 1016 18.421 ≈ 1030103000

It appears that 2n grows faster than n2, which grows faster than lnn. However, this is not a mathematically
precise argument. Also, we can never be sure how many terms must be calculated before a pattern become apparent.
Instead, we can compare two sequences by examining the ratio of their terms as n grows large.

De�nition 1. A sequence f (n) grows faster than g (n) (or g grows slower than f) if

lim
n→∞

f (n)

g (n)
=∞ or lim

n→∞

g (n)

f (n)
= 0.

In this case we write f � g or g � f .
Sequences f (n) and g (n) grow at the same rate if for some L, 0 < L <∞,

lim
n→∞

f (n)

g (n)
= L.

Example. Compare the following pairs of sequences and determine which grows faster.
a. lnn and n
b. lnn and ln lnn
c. en and np, p > 1
Solution. We �nd the limit of the ratio of functions, using L'Hopital's Rule as necessary.

lim
n→∞

lnn

n
= lim

x→∞

1
n

1
= 0

lim
n→∞

ln lnn

lnn
= lim

n→∞

1
n lnn

1/n
= lim

n→∞

1

lnn
= 0

lim
n→∞

en

np
= lim

x→∞

en

pnp−1
= lim

n→∞

en

p (p− 1)np−2
= ... =∞

Thus we see ln lnn� lnn� n, and np � en. Thus any power function grows slower than en (or any exponential
function with base more than 1). Many common functions can be ordered by their growth rates, as follows.

Theorem 2.

ln lnn� lnn� np
0<p<1

� n� n lnn� np
p>1
� en � n!� nn � en

2

One complication is the factorial function, which is used in Taylor series and many counting problems. Since
it is nondi�erentiable, it cannot be used directly. However, Stirling's approximation, n! ≈

√
2πn

(
n
e

)n
, can be

used for these calculations.
Additional sequences can be inserted into this order. For example, additional exponential sequences (1.1)

n �
2n � en � 3n could be inserted in place of en. The polynomial sequences n2 � n3 � n4 � n5 could be inserted.
Not every sequence �ts into this order; one could construct a sequence that crosses more than one of these sequences
in�nitely many times. However, these are the most common sequences used in calculus.

Sequences can be very complicated. However, often an approximation is all we need. The following notation is
called big-O notation.

De�nition 3. Let f and g be sequences. We say g ∈ O (f) if |g (n)| ≤ c |f (n)| for some c and su�ciently large n.

If g ∈ O (f), we say g is O (f). This means that g grows at most as fast as f .
Example. The sequences n3, n2, and lnn are all in O

(
n4

)
, but en is not.

If f (n)� g (n), what can we say about g (n) + f (n)? We see

lim
n→∞

g (n) + f (n)

g (n)
= lim

n→∞

(
1 +

f (n)

g (n)

)
= 1 + 0 = 1.

Thus g (n) + f (n) ∈ O (g (n)).
The sequences n2 − n and n2 − 3n+ 2 are in O

(
n2

)
. They all grow at the same rate, since they have the same

leading term. This is what really matters, since when n gets large, all other terms are small compared to the leading
term. Thus every polynomial grows at the same rate as its leading term. This also implies that every polynomial
grows slower than en.

One use of this information is in evaluating the complexity of an algorithm. This is a major topic in computer
science. Big-O notation is used to estimate how many operations an algorithm performs. It is typical to chop o�
the trailing terms and just report the leading term, which is a basic function like those in Theorem 2. Using a more
e�cient algorithm saves lots of time and money when the size of the input is large.

Example. Suppose you want to search an alphabetical list of names for a given name. One option, sequential
search, is to just check every name in order. If the list has n names, we may use up to n comparisons.

An alternative is to go to the middle of the list and check this name. If it is not the one we are searching
for, use either the �rst or second half of the list depending on how the given name compares to the middle name.
Repeat this process with the smaller list until the name is found or there are no more names to check. This is called
binary search. If there are at most n = 2r names, binary search will use at most r = log2 n comparisons. Thus
the complexity of binary search is O (log2 n), which is better than O (n) for sequential search.

A closely related question is how quickly functions go to zero. Note that if f (n) < g (n), then 1
f(n) >

1
g(n) .

Reversing the chain of inequalities above shows the following, for n su�ciently large.

1

n!
<

1

en
<

1

np
p>1

<
1

n lnn
<

1

n
<

1

np
0<p<1

<
1

lnn
<

1

ln lnn

This is important for the comparison test for improper integrals and in�nite series. It is also useful to determine
how quickly in�nite series converge.

Exercises.

1. Determine which sequence grows faster, or if they grow at the same rate.
a. n1000, en

b. ln lnn2, ln ln
√
n

c. n!, en lnn

d.
√
n2 − 6, 3

√
1 + n6

2. Put the following sequences in order of their growth rate. Where do they �t in the order of sequences in
Theorem 2?

a. n32n, n23n, n4en

b. n (lnn)
2
, n2 lnn, n ln

(
n2

)
c. ln (n lnn), ln ln 2n, ln ln lnn

d. e
√
n, nn, en

2

3. Determine which sequences are in O (f) for the given f . (Explain.)
a. n+ 3, n2 + 4n, n2 − n3,

√
n4 + 5; f = n2

b. log2 n, log n,
√
n, lnn2; f = lnn

c. 3n, 4n/2, nn, en+
1
n ; f = en

d. nlnn, (lnn)
n
, 2n!, (2n)!; f = n!

4. Show that if f (n) and g (n) grow at the same rate, then f ∈ O (g) and g ∈ O (f).
5. One common computer science problem is sorting data. The quicksort algorithm has complexity O

(
n2

)
,

and the merge sort algorithm has complexity O (n log2 n). Determine which algorithm is better.

6. For the Traveling Salesman Problem, a brute force algorithm has complexity (n−1)!
2 , and the Held-Karp

algorithm has complexity O
(
n22n

)
. Determine which algorithm is better.

