EVALUATING INFINITE LIMITS

Some limits do not exist (as real numbers) because the function goes to infinity. When a function $f(x)$ goes to infinity as $x \rightarrow a$, it is usually the case that trying to plug in a results in division by 0 . To determine what f does near a, we can break down the function into successive operations and determine what the limit does to each operation.

Example. Determine what happens to $f(x)=-\frac{1}{x-3}$ as $x \rightarrow 3^{-}, x \rightarrow 3^{+}$, and $x \rightarrow 3$.
Strategy. When a number is substituted for x, we successively perform the following operations: subtract 3, divide into 1, negate. Starting with what happens to x, we add one more operation in each step until we know what happens to $f(x)$. Remember that $x \rightarrow a^{-}$means that $x-a$ is a small negative number, and $x \rightarrow a^{+}$means that $x-a$ is a small positive number.

Solution. Assume $x \rightarrow 3^{-}$. Then $x-3 \rightarrow 0^{-}$. Dividing a small number into a number produces a number that is large (in absolute value), so $\frac{1}{x-3} \rightarrow-\infty$. Thus $-\frac{1}{x-3} \rightarrow \infty$. Assuming that $x \rightarrow 3^{+}$, a similar argument shows that $x-3 \rightarrow 0^{+}, \frac{1}{x-3} \rightarrow \infty$, and $-\frac{1}{x-3} \rightarrow-\infty$. We conclude that $\lim _{x \rightarrow 3^{-}} f(x)=\infty$ and $\lim _{x \rightarrow 3^{+}} f(x)=-\infty$. Since $f(x)$ goes different places from two sides, the limit as $x \rightarrow 3$ does not exist.

Example. Determine what happens to $f(x)=\frac{x^{2}-4}{(x-2)^{3}}$ as $x \rightarrow 2^{-}, x \rightarrow 2^{+}$, and $x \rightarrow 2$.
Solution. Note that we can simplify the function:

$$
f(x)=\frac{x^{2}-4}{(x-2)^{3}}=\frac{(x+2)(x-2)}{(x-2)^{3}}=\frac{(x+2)}{(x-2)^{2}} .
$$

While x occurs more than once in the function, only the occurrence in the denominator causes a discontinuity. When $x \approx 2, x+2 \approx 4$. We summarize our reasoning in the following table.

$x \rightarrow 2^{-}$	$x \rightarrow 2^{+}$
$x-2 \rightarrow 0^{-}$	$x-2 \rightarrow 0^{+}$
$(x-2)^{2} \rightarrow 0^{+}$	$(x-2)^{2} \rightarrow 0^{+}$
$\frac{(x+2)}{(x-2)^{2}} \rightarrow \infty$	$\frac{(x+2)}{(x-2)^{2}} \rightarrow \infty$

Note that the square (or any even power) of a negative number is positive, while any odd power of a negative number is still negative.

Recall that an asymptote is a line that a function approaches arbitrarily closely. More specifically, $f(x)$ has a vertical asymptote $x=a$ if $\lim _{x \rightarrow a \pm} f(x)= \pm \infty$. The reasoning used above can help to sketch the graph of a function near its asymptotes.

Example. Determine what happens to $f(x)=\frac{x+3}{(x+2)^{2}(x-5)}$ near its asymptotes.
Solution. Since division by zero causes asymptotes, we suspect that f has asymptotes at $x=-2$ and $x=5$. Starting with $x=5$, note that $\frac{x+3}{(x+2)^{2}}$ is positive near 5 . The table below left summarizes our reasoning.

$x \rightarrow 5^{-}$	$x \rightarrow 5^{+}$
$x-5 \rightarrow 0^{-}$	$x-5 \rightarrow 0^{+}$
$f(x) \rightarrow-\infty$	$f(x) \rightarrow \infty$

$x \rightarrow-2^{-}$	$x \rightarrow-2^{+}$
$x+2 \rightarrow 0^{-}$	$x+2 \rightarrow 0^{+}$
$(x+2)^{2} \rightarrow 0^{+}$	$(x+2)^{2} \rightarrow 0^{+}$
$f(x) \rightarrow-\infty$	$f(x) \rightarrow-\infty$

Near $-2, \frac{x+3}{x-5}$ is negative. The table above right summarizes our reasoning. Thus $x=-2$ and $x=5$ are both vertical asymptotes.

Exercises.

Evaluate the following limits for $f(x)$ as $x \rightarrow a^{-}, x \rightarrow a^{+}$, and $x \rightarrow a$.

1. $(a=1) f(x)=\frac{3}{x-1}$
2. $(a=4) f(x)=-\frac{5}{(x-4)^{2}}$
3. $(a=-2) f(x)=\frac{x}{(x+2)^{3}}$
4. $(a=-3) f(x)=\frac{x-7}{(x+3)^{4}}$

Determine what $f(x)$ does near each of its asymptotes.
5. $f(x)=\frac{x}{x^{2}-4}$
6. $f(x)=\frac{2-x}{x^{3}-4 x}$
7. $f(x)=\frac{x^{2}-16}{x^{2}-8 x+15}$
8. $f(x)=\frac{5-x}{x^{3}-10 x^{2}+21 x}$

