
THE INTEGRAL TEST

Most in�nite series cannot be easily evaluated. We need tests to determine whether they converge or diverge.

If the series diverges, there is no need to analyze it further. If it converges, we can try to �nd an exact value, or

estimate it.

An in�nite series may resemble a Riemann sum, so we can sometimes compare it to an integral to determine

convergence or divergence.

Theorem 1. (The Integral Test) If f (x) is a continuous, positive, decreasing function, and an = f (n), then∑∞
n=1 an and

∫∞
1
f (x) dx both converge or both diverge.

Proof. Since f (x) is decreasing, we have the following inequalities.

n∑
k=2

ak ≤
∫ n

1

f (x) dx ≤
n−1∑
k=1

ak

The lower bound is a Riemann sum using the right endpoints. The upper bound is a Riemann sum using the left

endpoints. The inequalities hold for all n, as n→∞. Thus

∞∑
k=2

ak ≤
∫ ∞
1

f (x) dx ≤
∞∑
k=1

ak

so the integral and series either both converge or both diverge.

Example. Determine whether
∑∞
n=1

1
n2 converges or diverges.

Solution. Consider the sum as a Riemann sum. Chopping o� the �rst term, we see
∑∞
n=2

1
n2 is a lower Riemann

sum for
∫∞
1

1
x2 dx. Thus

∞∑
n=1

1

n2
< 1 +

∫ ∞
1

1

x2
dx = 1 + 1 = 2.

Thus the sum converges to a value that is less than 2.

Example. Determine when the p-series
∑∞
n=1

1
np converges.

Solution. Using the Integral Test, we consider the integral
∫∞
1

1
xp dx. Note the antiderivative

∫
1
xp dx =

1
−p+1x

−p+1 when p 6= 1.

When p > 1, x−p+1 goes to 0 as x→∞. In this case, we have convergence:
∫∞
1

1
xp dx = 0− 1

−p+1 = 1
p−1 .

When p < 1, x−p+1 →∞ as x→∞. Thus we have divergence:
∫∞
1

1
xp dx =∞.

When p = 1, we �nd
∫∞
1

1
xdx = ln |x||∞1 =∞. Thus by the Integral Test, the p-series

∑∞
n=1

1
np converges when

p > 1 and diverges when p ≤ 1. The case p = 1 is the Harmonic Series again. It is the boundary case between

convergence and divergence for the p-series.

Example. Determine whether
∑∞
n=2

1
n·lnn converges or diverges.

Solution. Note that 1
n·lnn <

1
n , so an easy comparison does not answer the question. Using the Integral Test,

we consider the integral
∫∞
2

1
x·ln xdx. Using substitution, we �nd∫ ∞

2

1

x · lnx
dx = ln lnx|∞2 =∞.

Thus the series diverges.



Since the function ln lnx grows very slowly, the series
∑∞
n=2

1
n·lnn diverges very slowly. How slowly? Let's

estimate how many terms must be summed to get a sum of 10. This will occur approximately when ln lnn = 10.

Solving, we �nd n = ee
10

. How big is that?

To estimate the size of a large number N , write it in scienti�c notation: N = a · 10b. To �nd the number of

digits b, we could take a logarithm. Now logN = log a+ b, so there are blogNc digits in the decimal representation

of N .

Now we see log n = log ee
10

= e10 log e ≈ 9566. Thus n ≈ 109566, so n has about 9566 digits. Some students may

be tempted to determine divergence by adding a bunch of terms and seeing whether the result is a large number.

But this method fails when the sum diverges slowly, as in this case. Adding the �rst billion (109) terms won't even

get close to double digits! Convergence tests are necessary.

(*) Example. Consider the convergence of

∑
p prime

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ ...

where the sum ranges over all prime numbers p. Recall that a prime number is a natural number greater than 1

that is not a product of two smaller natural numbers. To determine convergence or divergence, we need to know

how prime numbers are distributed. The Prime Number Theorem provides the answer. Let pn be the nth prime

number. It says lim
n→∞

pn
n·lnn = 1. This implies that pn ≈ n · lnn. Thus

∑
p prime

1
p ≈

∑
1

n·lnn =∞.

Example. Determine when the logarithmic p-series
∑∞
n=1

1
n(lnn)p converges.

Solution. Note that the case p = 1 was handled in a previous example. Note that when p 6= 1,
∫

1
x(ln x)p dx =∫

1
up du , using the substitution u = lnx. Since lnx→∞ as x→∞, the result is the same as for the p-series. The

logarithmic p-series converges when p > 1 and diverges when p ≤ 1.

By generalizing this example, we can �nd a sequence of functions whose improper integrals diverge more and

more slowly, and a sequence whose improper integrals converge to larger and larger values. The corresponding series

approach a line between convergence and divergence.

∞∑
n=K

1

n1+ε
<

∞∑
n=K

1

n (lnn)
1+ε <

∞∑
n=K

1

n (lnn) (ln lnn)
1+ε < · · ·conv

‖ · · ·
div

<

∞∑
n=K

1

n (lnn) ln lnn
<

∞∑
n=K

1

n (lnn)
<

∞∑
n=K

1

n

(Note that ε > 0 is any small positive number and K is any constant for which the logarithms are all de�ned.)

The Integral Test can also be used to estimate the value of a convergent series. Let S =
∑∞
n=1 an and sn =∑n

i=1 ai. De�ne the remainder Rn = S − sn = an+1 + an+2 + ... Then

∫∞
n+1

f (x) dx ≤ Rn ≤
∫∞
n
f (x) dx

sn +
∫∞
n+1

f (x) dx ≤ S ≤ sn +
∫∞
n
f (x) dx

Example. Estimate the value of S =
∑∞
n=1

1
n2 using the �rst �ve terms.

Solution. Note that s5 = 1 + 1
2 + 1

3 + 1
4 + 1

5 ≈ 1.4636. Now
∫∞
n

1
x2 dx = 1

n . Plugging in n = 5 and n = 6

produces the upper and lower bounds s5 +
1
6 ≤ S ≤ s5 +

1
5 . Thus 1.6303 ≤ S ≤ 1.6636. Averaging the two bounds,

we see S ≈ 1.645. It is possible (but signi�cantly more di�cult) to show that S = π2

6 ≈ 1.644934.


