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Abstract

A k-tree is a graph that can be formed by starting with Kk and iterating the
operation of making a new vertex adjacent to all the vertices of a k-clique of the existing
graph. For order n > k + 1, a k-path graph is a k-tree with exactly two vertices of
degree k. We develop a formula for the number of unlabeled k-paths of order n. In
particular, there is a bijection between these graphs and equivalence classes of strings
of numbers from {1, 2, . . . , k} under a relation that treats them as equivalent when
they can be made the same by permutation of their numbers and possible reversal of
the string.
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1 Introduction

In this paper, we seek to count the number of unlabeled k-paths of order n. This work
builds on previous papers on maximal k-degenerate graphs with diameter 2 [7] and k-paths
of k-trees [6].

Undefined notation and terminology will follow Bickle [5]. In particular, Kn is the com-
plete graph with n vertices, and Pn is the path with n vertices. The complement of a graph
G is denoted G, and the join of two graphs G and H is denoted G+H. The neighborhood
of a vertex v is denoted N (v).

Definition 1. A k-tree is a graph that can be formed by starting with Kk and iterating the
operation of making a new vertex adjacent to all the vertices of a k-clique of the existing
graph.

A k-leaf is a degree k vertex of a k-tree.
A k-path graph G is an alternating sequence of distinct k-cliques and k + 1-cliques

e0, t1, e1, t2, . . . , tp, ep, starting and ending with a k-clique and such that ti contains exactly
two k-cliques ei−1 and ei.
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An interior k-caterpillar is a k-tree so that there is some k-path such that the k-leaves
of the caterpillar are k-leaves of the path or are attached to interior k-cliques (the ti’s) of
the k-path.

A dominating vertex of a graph is a vertex adjacent to all other vertices.

Any k-path is a k-tree. An example of a 2-path is shown below.

Figure 1: An example of a 2-path.

Beineke and Pippert [4] introduced k-paths of k-trees, and Proskurowski [16] considered
k-paths as graphs. Note that k-paths are also known as linear k-trees [1]. They are closely
related to pathwidth [17]; in particular, they are the maximal graphs with proper pathwidth
k. They are related to treewidth, zero forcing, and many related parameters [2], and are
extremal interval graphs [9]. Note that 2-paths are the 2-trees with the most spanning
trees [18] and they characterize the values of three parameters related to linear algebra [11].
Bickle [8] has a survey of k-trees, k-paths, and related graph classes.

There is a simple characterization of these graphs.

Theorem 2. [12] Let G be a k-tree with order n > k + 1. Then G is a k-path graph if and
only if G has exactly two k-leaves.

The number of labeled k-paths of order n is n!
2·k!k

n−k−2. This was proved by Markenzon
et al. [13] using a code for k-paths. Baste et al. [3] have a short proof.

We consider the number of unlabeled k-paths of order n. Eckhoff [9] studied interval
graphs that have maximum size for a given clique number, and showed that these graphs are
equivalent to interior k-caterpillars. Eckhoff (using ideas from Proskurowski [16]) showed
that there is a bijection between interior k-caterpillars of order n and k-paths of order n+ 2.
Eckhoff used this to prove recurrences for the number of k-paths of order n that depend on
smaller values of k and n, and found closed formulas for 2 ≤ k ≤ 4.

One approach to counting k-paths is to prove a bijection between them and strings of
numbers (or codes) that satisfy certain conditions. One approach to this was taken by Pereira
et al. [15], who defined a code based on the unique k+ 1-coloring of a k-path. Thus the code
uses integers from {1, 2, . . . , k + 1}. They define a recurrence by considering dominating
vertices and symmetry.

We define a different code for k-paths and show that they correspond to equivalence
classes of strings of numbers from {1, 2, . . . , k} under a relation that treats them as equivalent
when they can be made the same by permutation of their numbers and possible reversal of
the string. The problem of enumerating such strings was previously studied by Nester [14]
using Polya enumeration. This produced a method for calculating small values of these
sequences, but did not produce closed formulas for them.
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2 Construction strings

To count k-paths, we need a way to describe their construction with a string of numbers. A
k-path with vertices v1, . . . , vn can be constructed from Kk+1 by successively adding k-leaves
so that v1 is always a k-leaf, and each vi with k + 1 < i < n is a k-leaf until vi+1 is added.
We define a labeling of the k-path so that the two k-leaves are unlabeled, and every other
vertex receives a label.

Label the k neighbors of v1 with {1, 2, . . . , k} (in any way). Each time a k-leaf vi+1 is
added adjacent to (old) k-leaf vi, label vi with whatever number in {1, 2, . . . , k} is not already
a label of a neighbor of vi+1. Record each new label added (after the first k) in order.

Definition 3. A construction string of a k-path is the string of n − k − 2 numbers added
after the first k using the algorithm above.

An example of constructing a 2-path is shown below. The construction string is recorded
below each iteration.
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2 2
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2

→
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1

2

1

2
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Figure 2: Finding the construction string of a 2-path.

Definition 4. Let a k-string be an ordered list of numbers from [k]. The reverse-permute
(RP) relation treats k-strings as equivalent when they can be made the same by permutation
of their numbers and possible reversal of the string.

For example, the 2-strings 1112, 2221, 2111, and 1222 are equivalent under the RP
relation. There are six equivalence classes of 2-strings of length 4, with representatives 1111,
1112, 1121, 1122, 1212, and 1221.

Lemma 5. The number of unlabeled k-paths of order n ≥ k + 3 equals the number of
equivalence classes of k-strings of length n− k − 2 under the RP relation.

Proof. Consider constructing a k-path of order n using the algorithm described above, pro-
ducing a construction string of length n − k − 2. Since the labeling of the first k labeled
vertices is arbitrary, any permutation of this string can be produced by the k-path. It can
also be constructed starting from the other 2-leaf. Constructing from the other k-leaf re-
verses the string, since each number in the string corresponds to a copy of P4 + Kk−1 in
the k-path. Thus each k-path produces an equivalence class of k-strings of length n− k − 2
under the RP relation.

Alternatively, we can start with a construction string and use it to construct a k-path.
Each number specifies a unique way to add each new vertex, so each construction string
produces a single k-path. Thus we have a bijection between k-paths of order n ≥ k + 3 and
equivalence classes of k-strings of length n− k − 2 under the RP relation.
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3 Counting k-strings and k-paths

Thus the problem of counting k-paths reduces to the problem of counting equivalence classes
of k-strings under the RP relation. These equivalence classes do not all have equal size.

Definition 6. A k-string has reversal symmetry if it can have its numbers permuted to
produce the reverse of the string.

For example, of the 2-strings of length 4, 1111, 1122, 1212, and 1221 have reversal
symmetry and 1112 and 1121 don’t. To count k-strings, we must separate them into those
with reversal symmetry and those without.

If a string has reversal symmetry, permuting its numbers to reverse the string twice must
produce the original string. A permutation that is self-inverse is called an involution. An
involution must have cycles of length one or two only. We will need the sequence s (n) of
involution numbers. This sequence (A000085 in OEIS, the On-Line Encyclopedia of Integer
Sequences) begins 1, 2, 4, 10, 26, 76, 232, 764, 2620, . . . The following formula is easily
demonstrated:

s (n) =

bn/2c∑
k=0

n!

2k (n− 2k)!k!
.

i a (i, x)
1 1
2 2 · 2r − 2
3 4 · 3r − 6 · 2r

4 10 · 4r − 16 · 3r + 8
5 26 · 5r − 50 · 4r + 40 · 2r − 10
6 76 · 6r − 156 · 5r + 160 · 3r − 60 · 2r − 36
7 232 · 7r − 532 · 6r + 700 · 4r − 280 · 3r − 252 · 2r + 112

Table 1: Formulas for a (i, x), r = dx
2
e

i a′ (i, x)
1 1
2 2r − 2
3 2 · 3r − 3 · 2r

4 4 · 4r − 8 · 3r + 8
5 10 · 5r − 20 · 4r + 20 · 2r − 10
6 26 · 6r − 60 · 5r + 80 · 3r − 30 · 2r − 36
7 76 · 7r − 182 · 6r + 280 · 4r − 140 · 3r − 126 · 2r + 112

Table 2: Formulas for a′ (i, x), r = dx
2
e
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Theorem 7. Let a (1, x) = a′ (1, x) = 1, and

a (i, x) = s (i) · id
x
2
e −

i−1∑
j=1

(
i

j

)
a (j, x) s (i− j)

a′ (i, x) = s (i− 1) · id
x
2
e −

i−1∑
j=1

(
i

j

)
a′ (j, x) s (i− j)

b (i, x) =
i∑

j=1

(−1)i−j
(
i

j

)
jx.

The number of equivalence classes of k-strings of length x under the RP relation is{∑k
i=1

b(i,x)+a(i,x)
2·i! , x even;∑k

i=1
b(i,x)+a′(i,x)

2·i! , x odd.

Proof. We split the strings into those that have reversal symmetry and those that do not.
Let the number of strings of length x using exactly i numbers that have reversal symmetry
be a (i, x) for x even, and a′ (i, x) for x odd. Certainly a (1, x) = a′ (1, x) = 1. To find how
many strings with reversal symmetry use exactly i numbers, we find how many use at most
i numbers and subtract out those that use fewer than i.

Assume x is even. There are dx
2
e number in the first half of the string. There are i

choices for each position, so there are id
x
2
e choices for the first half of the string. Since the

string has reversal symmetry, an involution of the first half must produce the second half,
which can happen in s (i) ways. Thus there are s (i) · idx2 e strings with reversal symmetry
that use at most i numbers. There are

(
i
j

)
choices of j numbers that appear in a string

using exactly j of i numbers. The number of involutions of the remaining j − i numbers is
s (j − i), so each string using exactly j of i numbers will appear

(
i
j

)
a (j, x) s (i− j) times in

the s (i) · idx2 e strings. We subtract these out for each j between 1 and i− 1, producing the
recursive formula

a (i, x) = s (i) · id
x
2
e −

i−1∑
j=1

(
i

j

)
a (j, x) s (i− j) .

Now let x be odd. As before, to find how many strings with reversal symmetry use
exactly i numbers, we find how many use at most i numbers and subtract out those that use
fewer than i. A permutation that reverses the string must fix the middle element, so s (i− 1)
involutions produce the second half of the string. Thus there are s (i− 1) · idx2 e strings with
reversal symmetry that use at most i numbers. As before, we have the recursive formula

a′ (i, x) = s (i− 1) · id
x
2
e −

i−1∑
j=1

(
i

j

)
a′ (j, x) s (i− j) .
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Let the total number of strings of length x using exactly i specified numbers of k num-
bers be b (i, x). Equivalently, this is the number of onto functions from {1, 2, . . . , k} to
{1, 2, . . . , i}. There is a well-known formula for this, proved using inclusion-exclusion ([19,
p. 561]), showing b (i, x) =

∑i
j=1 (−1)i−j

(
i
j

)
jx. Thus the number of strings without reversal

symmetry is b (i, x)− a (i, x) or b (i, x)− a′ (i, x), depending on parity.
A k-string with reversal symmetry using exactly i of k numbers is part of an equivalence

class of i! strings equivalent under the RP relation. A k-string without reversal symmetry
using exactly i of k numbers is part of an equivalence class of 2 · i! strings equivalent under
the RP relation. Thus the number of equivalence classes of k-strings of even length x under
the RP relation is

k∑
i=1

a (i, x)

i!
+

k∑
i=1

b (i, x)− a (i, x)

2 · i!
=

k∑
i=1

b (i, x) + a (i, x)

2 · i!
.

The number of equivalence classes of k-strings of odd length x under the RP relation is

k∑
i=1

a′ (i, x)

i!
+

k∑
i=1

b (i, x)− a′ (i, x)

2 · i!
=

k∑
i=1

b (i, x) + a′ (i, x)

2 · i!
.

Corollary 8. The number of unlabeled k-paths of order n ≥ k + 3 is{∑k
i=1

b(i,n−k−2)+a(i,n−k−2)
2·i! , n− k even;∑k

i=1
b(i,n−k−2)+a′(i,n−k−2)

2·i! , n− k odd.

For small values of k, here are simplified formulas from Theorem 7 for the number N (k, x)
of k-paths of order x = n− k − 2.

N(2, x) =

{
1
4
2x + 1

2
2d

x
2e, n even;

1
4
2x + 1

4
2d

x
2e, n odd;

= 2n−6 + 2b
n−6
2 c.

N(3, x) =

{
1
12

3x + 1
6
3d

x
2e + 1

4
, n even;

1
12

3x + 1
3
3d

x
2e + 1

4
, n odd.

N(4, x) =

{
1
48

4x + 5
24

4d
x
2e + 1

8
2x + 1

3
, n even;

1
48

4x + 1
12

4d
x
2e + 1

8
2x + 1

3
, n odd.

N(5, x) =

{
5x

240
+ 3x

24
+ 2x

12
+ 5d

x
2 e

24
+ 2d

x
2 e

12
+ 5

16
, n even;

5x

240
+ 3x

24
+ 2x

12
+ 13·5d

x
2 e

120
+ 2d

x
2 e
6

+ 5
16
, n odd.

N(6, x) =

{
6x

1440
+ 4x

96
+ 3x

36
+ 3·2x

32
+ 19·6d

x
2 e

360
+ 3d

x
2 e
9

+ 2d
x
2 e
8

+ 17
60
, n even;

6x

1440
+ 4x

96
+ 3x

36
+ 3·2x

32
+ 13·6d

x
2 e

720
+ 3d

x
2 e

18
+ 2d

x
2 e

16
+ 17

60
, n odd.

N(7, x) =

{
7x

10080
+ 5x

480
+ 4x

144
+ 3x

32
+ 11·2x

120
+ 19·7d

x
2 e

2520
+ 4d

x
2 e

36
+ 3d

x
2 e

24
+ 2d

x
2 e

20
+ 85

288
, n even;

7x

10080
+ 5x

480
+ 4x

144
+ 3x

32
+ 11·2x

120
+ 29·7d

x
2 e

1260
+ 5·4d

x
2 e

72
+ 3d

x
2 e

12
+ 2d

x
2 e

10
+ 85

288
, n odd.
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In general, the dominant term is always 1
2·k!k

n−k−2, and for k ≥ 5, the next largest term

is 1
4·(k−2)! (k − 2)n−k−2. The following table lists the beginnings of the sequences, and their

OEIS numbers.

k Sequence (n ≥ k + 3) OEIS

2 1, 2, 3, 6, 10, 20, 36, 72, 136, 272, . . . A005418
3 1, 2, 4, 10, 25, 70, 196, 574, 1681, 5002, . . . A001998
4 1, 2, 4, 11, 31, 107, 379, 1451, 5611, 22187, . . . A056323
5 1, 2, 4, 11, 32, 116, 455, 1993, 9134, 43580, . . . A056324
6 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, . . . A056325
7 1, 2, 4, 11, 32, 117, 468, 2151, 10722, 58071, . . . A345207

Table 3: Sequences counting k-paths

All k-paths with order k + 3 ≤ n ≤ 2k + 1 have diameter 2, and so have a dominating
vertex. If there are N k-paths with order 2k + 2, then there are N k + t-paths with order
2k + 2 + t, since they have at least t dominating vertices. Thus the sequences in the table
above approach a limiting sequence of 1, 2, 4, 11, 32, 117, 468, 2152, 10743, . . . which is
A103293.

The formula for the number of 2-paths of order n ≥ 5 simplifies to 2n−6 + 2b
n−6
2
c. Harary

and Schwenk [10] showed that there are 2n−4 + 2b
n−4
2
c caterpillars of order n ≥ 3 using a

similar proof technique. Eckhoff [9] and Pereira et al. [15] both showed that the number of
2-paths of order n equals the number of caterpillars of order n− 2 using a natural bijection.
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