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Abstract

A k-tree is a graph that can be formed by starting with Kk+1 and
iterating the operation of making a new vertex adjacent to all the
vertices of a k-clique of the existing graph. When the order n > k+1,
a k-path graph is a k-tree with exactly two vertices of degree k. We
state a forbidden subgraph characterization for k-paths as k-trees.
We characterize k-trees with diameter d ≥ 2 based on the k-paths
they contain.

1 Introduction

In this paper, we seek to describe the structure of k-trees using k-paths,
particularly focusing on the diameter of k-trees. Undefined notation and
terminology will follow [2].

This work builds on previous papers on the Wiener index of maximal k-
degenerate graphs [3] (with Zhongyuan Che) and on maximal k-degenerate
graphs with diameter 2 [4].

Definition 1. A k-tree is a graph that can be formed by starting with
Kk+1 and iterating the operation of making a new vertex adjacent to all
the vertices of a k-clique of the existing graph. The clique used to start the
construction is called the root of the k-tree.

A k-leaf is a degree k vertex of a k-tree.
A k-path graph G is an alternating sequence of distinct k- and k + 1-

cliques e0, t1, e1, t2, ..., tp, ep, starting and ending with a k-clique and such
that ti contains exactly two k-cliques ei−1 and ei.

An example of a 2-path (which is also a 2-tree) is shown below left. A
2-tree that is not a 2-path (the triangular grid Tr2) is below right.

Tr2
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Note that k-paths are also known as linear k-trees [1]. They are closely
related to pathwidth [6]; in particular, they are the maximal graphs with
proper pathwidth k. There is a simple characterization of these graphs.

Theorem 2. [5] Let G be a k-tree with n > k + 1 vertices. Then G is a
k-path graph if and only if G has exactly two k-leaves.

This leads to a forbidden subgraph characterization for k-paths as k-
trees.

Theorem 3. A k-tree is a k-path if and only if it does not contain Kk+K3

or for k ≥ 2, Tr2 + Kk−2.

Proof. (⇒) (contrapositive) These graphs contain three k-leaves, so they
are not k-paths.

(⇐) (contrapositive) A k-tree that is not a k-path must have at least
three k-leaves. Then it must contain a subgraph G that is minimal with
respect to this property. It will have exactly three k-leaves, and deleting
any of them results in a k-path. Let H be the graph formed by deleting all
k-leaves from G. If H is not a clique, then it has two k-leaves, one of which
has only one k-leaf of G neighboring it, so G is not minimal.

If H = Kk, G = Kk+K3. If H = Kk+1, each of its vertices are adjacent
to a k-leaf of G. If two k-leaves of G have the same neighborhood, then
G is not minimal. Thus there are k − 2 vertices of H adjacent to all three
k-leaves of G, and deleting them produces Tr2.

2 Diameter of k-Trees

A tree is minimal with respect to diameter d if and only if it is Pd+1. In
[4], I found a characterization of k-trees minimal with respect to diameter
3.

Definition 4. A dominating vertex of a graph is a vertex adjacent to
all other vertices.

Algorithm 5. Let P be a k − 2-path, k ≥ 3, of order n − 4 with k-leaves
w and x. Join dominating vertices y and z to P , forming P + K2. Add u
with neighborhood N (w) ∪ {w, y}, and v with neighborhood N (x) ∪ {x, z}.
Let Gk be the class of all graphs formed this way.
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Theorem 6. [4] A graph G is a k-tree minimal with respect to diameter 3
if and only if G ∈ Gk.

Equivalently, a k-tree has diameter at most 2 if and only if it does not
contain any graph in Gk.

The graphs in Gk are all k-paths. A generalization also holds.

Lemma 7. A k-tree minimal with respect to diameter d ≥ 2 is a k-path.

Proof. A k-tree with diameter at least d must contain a pair of vertices
distance d apart. Now adding a vertex to a k-tree cannot change any
existing distances. Thus in a minimal k-tree with diameter d, the vertices
at distance d must be k-leaves, and no other vertices are k-leaves.

The 2-paths with diameter d cannot be characterized solely by their de-
gree sequences, as there are two 2-paths with degree sequence 5,4,4,3,3,3,2,2
which have diameters 3 and 4 (see below). A characterization based on the
arrangement of the degree 4 vertices is possible.

Definition 8. A hub is a vertex of degree at least 5 of a 2-path. A truss
is a subgraph induced by vertices of degree 4 in a 2-path. An external
truss has a vertex neighboring a 2-leaf, an internal truss does not.

In the 2-path below, the black vertex is an internal truss and the gray
vertices induce an external truss.
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Theorem 9. Let G be a 2-tree minimal with respect to diameter d. Then
G is a 2-path, and if G 6= P 2

2d, the 2-leaves are adjacent to external trusses
with odd order. If h is the number of hubs, ti is the order of the ith internal
truss, and t′ and t′′ are the orders of the external trusses, then d = h +∑⌊

ti
2

⌋
+
⌈
t′

2

⌉
+
⌈
t′′

2

⌉
+ 1.

Proof. By Lemma 7, a minimal 2-tree with diameter d is a 2-path. To show
the formula holds, we use induction on n. Since G 6= P 2

2d, it contains a hub.
We start with the fan induced by its closed neighborhood. This has h = 1,
d = 2, and all other quantities 0. We add vertices one at a time, checking
that the formula holds in each case.

There are only two choices how to add a new 2-leaf next to an existing
2-leaf. In one choice, the other neighbor had degree at least 4. If it is
already a hub, the diameter does not increase. If it is part of a truss of
odd order, one vertex of the truss becomes a hub, the rest of the truss (if
any) becomes internal, the sum does not change, and the diameter does
not increase. If it is part of a truss of positive even order, one vertex of the
truss becomes a hub, the rest of the truss becomes internal, the sum does
not change, and the diameter does not increase.

In the other choice, the other neighbor had degree 3, so we create an
external truss or add one vertex to an existing external truss. If the truss
had odd order, adding this vertex does not change the diameter. If the
truss is new or had even order, adding this vertex increases the diameter
by 1.

Since only the last case increases the diameter, in a 2-path minimal
with respect to d, the 2-leaves are adjacent to external trusses with odd
order.

Thus a 2-tree with order n ≥ 5 has diameter at least d if any only if
it contains a 2-path with the properties described in the theorem. This
implies that a 2-tree has diameter at least 3 if any only if it contains P 2

6 .
To characterize k-trees with diameter d, we need a way to describe the

construction of k-paths.
A k-path can be constructed from Kk + K2 with k-leaves u and v by

maintaining u as a k-leaf and adding a new k-leaf adjacent to v and k − 1
of its k neighbors. Label the k neighbors of u 1 through k (in any way).
Each time a k-leaf x is added adjacent to (old) k-leaf w, label w with the
label of its neighbor that does not neighbor x.
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Define a string of length n− k − 2 with the labels added after the first
k. Call this a construction string of the k-path.

Definition 10. A string of numbers contains a pattern if the numbers
in the pattern occur in order (not necessarily consecutively) in the string.

For example, the pattern 321 is contained in 312213 but not 132233.

Theorem 11. A k-tree has diameter d ≥ 2 if and only if it contains a
k-path whose construction string contains at least d− 2 consecutive permu-
tations of {1, ..., k}.

Proof. By Lemma 7, a k-tree with diameter d contains a k-path with di-
ameter d. Let G be a k-path with diameter d and k-leaves (say) u and v.
We show that the number of consecutive permutations of {1, ..., k} in the
string is always d− 2. Certainly this is true for Kk +K2, which is minimal
with diameter 2 and has an empty string.

Let H be a minimal k-path contained in G with k-leaves u and w. The
vertices in N (w) have labels 1, ... , k. Each vertex added to form G removes
one vertex from the neighborhood of the k-leaf it replaces, so at most one
vertex from NH (w). To increase the diameter, each vertex in NH (w) must
be removed, and each will be replaced with another vertex with the same
label. The diameter increases by one exactly when the string contains one
more permutation of {1, ..., k}.
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