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Abstract

A Nordhaus-Gaddum theorem states bounds on p (G)+p
(
G
)

and p (G)·p
(
G
)

for some graph parameter p (G). We consider the sum upper bound for
degeneracy, chromatic number, fractional and circular chromatic number,
list chromatic number, span, and point partition number. Viewing

{
G,G

}
as a decomposition of Kn, we describe a strategy to determine the extremal
decompositions for these parameters. This produces short proofs of several
existing results as well as several new theorems.
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One common way to study a graph parameter p (G) is to examine the sum
p (G)+p

(
G
)

and product p (G)·p
(
G
)
. A theorem providing sharp upper and

lower bounds for this sum and product is known as a Nordhaus-Gaddum
theorem. The original Nordhaus-Gaddum Theorem [30] dealt with chro-
matic number; there are now hundreds of analogous results for other param-
eters. Of the four possible bounds, the sum upper bound has attracted the
most attention.

Many authors state when a bound in a Nordhaus-Gaddum theorem is
an equality in terms of conditions on a graph. This often leads to awkward
characterizations, as authors try to describe conditions on G as conditions
on G. It is more convenient to think of G and G as a decomposition of Kn.
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Definition 1. A decomposition of G is a set of nonempty subgraphs,
called factors, whose edge sets partition E (G). The subgraphs are said to
decompose G. A k-decomposition of a graph G is a decomposition of
G into k subgraphs. We use {G1, G2} to denote a decomposition of G with
factors G1 and G2.

Aouchiche and Hansen [1] compiled a huge survey of Nordhaus-Gaddum
theorems for 2-decompositions (see also [8]). There are also Nordhaus-
Gaddum theorems for decompositions with more than two factors. See [3]
for degeneracy and [21] for degeneracy, chromatic number, and more.

We focus on the problem of determining extremal graphs for the upper
bound when the parameter is degeneracy, chromatic number, fractional and
circular chromatic number, list chromatic number, span, and point partition
number. There is no strategy that works for any parameter, but we describe
an approach that works for many related graph coloring parameters.

The basic strategy we use is to find a bound for the parameter (usually
using degeneracy) and sum the bounds over the two factors. We also need a
characterization of when the bound is an equality (such as Brooks’ Theorem),
at least under some restrictions. We consider the critical subgraphs and
find the subdecomposition where they overlap, and use this to determine all
extremal decompositions.

Definitions of terms and notation not defined here appear in [5]. In par-
ticular, Kn and Cn are the complete graph and cycle of order n, and K1,n−1
is the star of order n. Also, G is the complement of G and G+H is the join
of graphs G and H. We use n for the number of vertices when the context
is clear.

1. Degeneracy

Definition 2. A graph is k-degenerate if its vertices can be successively
deleted so that immediately prior to deletion, each has degree at most k.
The degeneracy D (G) of a graph G is the smallest k such that it is k-
degenerate. A deletion sequence of a graph G is a sequence of its vertices
formed by iterating the operation of deleting a vertex of smallest degree and
adding it to the sequence until no vertices remain. A graph G is k-monocore
if D(G) = δ(G) = k.

Equivalently, a graph is k-degenerate if δ (H) ≤ k for every subgraph H
(see also [4]).
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Theorem 3. For any graph G, D (G) + D
(
G
)
≤ n − 1. The graphs for

which D (G) +D
(
G
)

= n− 1 are exactly the graphs constructed by starting
with a regular graph and iterating the following operation.
Given k = D (G), H a k-monocore subgraph of G, add a vertex adjacent to
at least k + 1 vertices of H, and all vertices of degree k in H (or similarly
for G).

A proof of the upper bound due to H. V. Kronk is implicit in [14]. It is
stated explicitly without proof by Borodin [10]. The proof for the extremal
decompositions appears in [3]. Borodin also proved a sharp lower bound for
D (G) +D

(
G
)
.

There is a simple method that often produces a product upper bound
when a sum upper bound is known. It is well-known that

√
xy ≤ x+y

2
with

equality exactly when x = y, which justifies the following lemma.

Lemma 4. [14] If p (G) + p
(
G
)
≤ f (n), then p (G) · p

(
G
)
≤ (f(n))2

4
, with

equality exactly when p (G) = p
(
G
)

= f(n)
2
.

Next we apply this to degeneracy.

Corollary 5. For any graph G, 0 ≤ D (G) · D
(
G
)
≤
(
n−1
2

)2
. The lower

bound is an equality exactly for
{
Kn, Kn

}
. The upper bound is an equality

exactly when the sum bound is attained and D (G) = D
(
G
)
.

Proof. The lower bound is obvious. Equality occurs exactly when one of the
factors is 0, implying one is empty and the other is complete. The upper
bound follows from Lemma 4.

Aside from being interesting in its own right, degeneracy is also useful in
proving the theorems on vertex coloring to follow.

2. Chromatic Number

Definition 6. The chromatic number of a graph, χ (G), is the smallest num-
ber of subsets into which the vertices of a graph can be partitioned so that
no two vertices in the same subset are adjacent. A graph is critically
k-chromatic (k-critical when the context is clear) when χ (G) = k and
χ (H) < k for any proper subgraph H ⊂ G.
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We will need the well-known fact that a k-critical graph G has δ (G) ≥
k − 1.
Degeneracy can be used to bound the chromatic number.

Theorem 7. (The Degeneracy Bound) For any graph G, χ (G) ≤ 1 +
D (G).

Proof. Color the vertices using the reverse of a deletion sequence. Each
vertex has degree at most equal to its degeneracy when colored. Coloring it
uses at most one more color. Thus χ (G) ≤ 1 +D (G).

The bound χ (G) ≤ 1 + D (G) was apparently first published by Erdős
and Hajnal [18], who describe it as “well-known”. They call the quantity
1 + D (G) the “coloring number”. The same bound was also published by
Szekeres and Wilf [33] and many others.
The sum upper bound of the original Nordhaus-Gaddum Theorem follows
immediately from the Degeneracy Bound.

Corollary 8. [30] For any graph G, χ (G) + χ
(
G
)
≤ n+ 1.

Proof. We have χ (G)+χ
(
G
)
≤ 1+D (G)+1+D

(
G
)
≤ n−1+2 = n+1.

We would like to characterize the extremal decompositions for the Nordhaus-
Gaddum Theorem. Note that if a 2-decomposition of Kn achieves χ (G) +
χ
(
G
)

= n+ 1, then we can easily construct a 2-decomposition of Kn+1 with

χ (H) + χ
(
H
)

= n + 2, by letting H = G + K1. Similarly, we may be able

to delete some vertex v of Kn so that χ (G− v) + χ
(
G− v

)
= n. If this is

impossible, we say that an extremal decomposition is fundamental.

Definition 9. A decomposition
{
G,G

}
of Kn with χ (G) + χ

(
G
)

= n + 1
so that deleting any vertex v of Kn reduced the chromatic number of both
factors is called a fundamental decomposition.

To characterize the extremal decompositions, we also need Brooks’ The-
orem.

Theorem 10. (Brooks’ Theorem) [11] If G is connected, then χ (G) =
1 +4 (G) if and only if G is complete or an odd cycle.

Short proofs of Brooks’ Theorem are available, e.g. in [6] and [16].
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Lemma 11. A fundamental 2-decomposition
{
G,G

}
of Kn has χ (G) +

χ
(
G
)

= n+ 1 if and only if it is {K1, K1} or {C5, C5}.

Proof. (⇐) It is easily seen that χ (K1)+χ (K1) = 2 and χ (C5)+χ (C5) = 6,
so these decompositions satisfy the equation. They are fundamental since no
vertex can be deleted from the first, and deleting a vertex from the second
produces {P4, P4}, and χ (P4) + χ (P4) = 4.
(⇒) Consider a fundamental 2-decomposition

{
G,G

}
. Then both graphs

are connected. Let χ (G) = r, so that χ
(
G
)

= n + 1 − r. Then δ (G) ≥
r − 1 and δ

(
G
)
≥ n + 1 − r. Now for any vertex v, n − 1 ≤ δ (G) +

δ
(
G
)
≤ dG (v) + dG (v) ≤ n− 1. Thus we have equalities, so G and G must

be regular. Now by Brooks’ Theorem, the only connected regular graphs
achieving χ (G) = 1 + D (G) are cliques and odd cycles. The only such
graphs whose complements are connected and also achieve the upper bound
are are K1 and C5. Thus the fundamental 2-decompositions are as stated.

We can now describe all extremal 2-decompositions for the upper bound of
the Nordhaus-Gaddum theorem.

Theorem 12. A 2-decomposition
{
G,G

}
of Kn has χ (G)+χ

(
G
)

= n+1 if
and only if the critical subgraphs are {Kp+1, Kn−p} or {C5 +Kp, C5 +Kn−p−5}.

Proof. (⇐) Both decompositions have order n and χ (G) + χ
(
G
)

= n+ 1.
(⇒) Assume that we have an extremal 2-decomposition with critical sub-
graphs G and H. They must overlap on some nonempty set of vertices S2.
Let S1 be the set of vertices only in G, and let S3 be the set of vertices only
in H. Let Gi be G restricted to Si, and similarly for H. Let ni = |Si|.

We have χ (G) + χ (H) ≤ χ (G1) + χ (G2) + χ (H2) + χ (H3) ≤ n1 + n2 +
1 + n3 = n + 1. Thus the decomposition of S2 consists of spanning regular
critical graphs, so it is one of those listed in Lemma 11.

If G2 = K1 and H2 = K1, then G ⊆ Kn1+1 and H ⊆ Kn3+1. These must
be equalities, since complete graphs are critical. If G2 = C5 and H2 = C5,
then G ⊆ C5 + Kn1 and H ⊆ C5 + Kn3 . These must be equalities, since
C5 +Kr is critical. Set p = n1, and we are done.

H. J. Finck [20] determined an equivalent but inelegant characterization
whose proof is about 3.5 pages long. Starr and Turner [32] determined the
following alternative characterization whose proof is about 3 pages long.
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Theorem 13. [32] Let G and G be complementary graphs on n vertices.
Then χ (G) +χ

(
G
)

= n+ 1 if and only if V (G) can be partitioned into three
sets S, T , and {x} such that G [S] = Kχ(G)−1 and G [T ] = Kχ(G)−1.

This characterization does not make it clear what G and G are. However, it
is a corollary to Theorem 12.
Having characterized the graphs for which χ (G) + χ

(
G
)

= n + 1, we may

consider when χ (G) + χ
(
G
)

= n. Restricted to regular graphs, this is not a
difficult problem.

Proposition 14. A 2-decomposition
{
G,G

}
of Kn with regular factors has

χ (G) + χ
(
G
)

= n if and only if it is
{
C7, C7

}
or {C4, 2K2}.

Proof. We have n = χ (G) + χ
(
G
)
≤ 1 + D (G) + 1 + D

(
G
)

= n + 1,

so exactly one of G or G achieves the Degeneracy Bound, say G. If G is
connected, then by Brooks’ Theorem, G is a complete graph or odd cycle.
But the complement of a complete graph also achieves the upper bound. If
G = Cn with n ≥ 5 odd, then χ

(
Cn

)
= n+1

2
. But Cn is n − 3-regular, so

n+1
2

= n− 3 implies n = 7.
If G is disconnected, then it is a union of r-regular components, at least one of
which is a clique or an odd cycle. Consider starting with only this component
and adding another component with order k. This increases χ (G) + χ

(
G
)

by at most k − r. Thus to get χ (G) + χ
(
G
)

= n we want r = 1, so the
new component is K2, and no other component can be added. Thus only the
2-decomposition {C4, 2K2} works.

The product upper bound follows from Theorem 12 using Lemma 4. This
bound is attained exactly when the sum bound is attained and χ (G) = χ

(
G
)
.

Corollary 15. [30, 20] For any graph G, χ (G) ·χ
(
G
)
≤
(
n+1
2

)2
. The bound

is attained exactly for
{
Kn+1

2
, Kn+1

2

}
and

{
C5 +Kn−5

2
, C5 +Kn−5

2

}
.

Finck’s proof of the the extremal graphs is about 1.5 pages.

3. Fractional and Circular Chromatic Number

We can easily determine the extremal decompositions for some graph
coloring parameters that are less than the chromatic number.
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Definition 16. An k-set coloring assigns each vertex of a graph G a set
of k colors so that adjacent vertices receive disjoint sets of colors. Let χk (G)
be the minimum number of colors in an k-set coloring of G. The fractional

chromatic number χf (G) of a graph G is χf (G) = lim
k→∞

χk(G)
k

.

Let k and d be positive integers with k ≥ 2d. A (k, d)-coloring of a
graph G on n vertices is a mapping f : V (G) → {0, 1, ..., k − 1} such that
d ≤ |f (u)− f (v)| ≤ k − d for any uv ∈ E (G). The circular chromatic
number χc (G) of G is the minimum of k

d
for which there exists a (k, d)-

coloring of G.

It is easily seen that max
{
ω (G) , n

α(G)

}
≤ χf (G) ≤ χc (G) ≤ χ (G).

We have χf (C5) = 5
2

using the 2-set coloring -12-34-51-23-45-, and also
χc (C5) = 5

2
[36]. Brown and Hoshino [12] proved the following inequality.

Corollary 17. For any graph G, χf (G) + χf
(
G
)
≤ χc (G) + χc

(
G
)
≤

n + 1. A 2-decomposition
{
G,G

}
of Kn has χf (G) + χf

(
G
)

= n + 1 or

χc (G)+χc
(
G
)

= n+1 if and only if the critical subgraphs are {Kp+1, Kn−p}.
Proof. By the Nordhaus-Gaddum Theorem,

χf (G) + χf
(
G
)
≤ χc (G) + χc

(
G
)
≤ χ (G) + χ

(
G
)
≤ n+ 1.

If χf (G)+χf
(
G
)

= n+1, then χ (G)+χ
(
G
)

= n+1, so we only need to check
the decompositions that satisfy the latter inequality. By Theorem 12, these
are {Kp+1, Kn−p} or {C5 +Kp, C5 +Kn−p−5}. Now χf (Kp+1)+χf (Kn−p) =
n+ 1, but χc (C5 +Kp) + χc (C5 +Kn−p−5) = n, since χc (C5) = 5

2
.

It is easy to prove a similar result for the clique number ω (G). We have
ω (G)+ω

(
G
)

= n+1 exactly when the critical subgraphs are {Kp+1, Kn−p}.

4. List Chromatic Number

Next we consider a Nordhaus-Gaddum theorem for list coloring. The
techniques used for chromatic number also work here, with some modifica-
tions.

Definition 18. A list coloring of a graph begins with lists of length k
assigned to each vertex and chooses a color from each list to obtain a proper
vertex coloring. A graph G is k-choosable if any assignment of lists to the
vertices permits a proper coloring. The list chromatic number χl (G), is
the smallest k such that G is k-choosable.
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We have the following basic bounds on list chromatic number.

Theorem 19. [19] For any graph G, χ (G) ≤ χl (G) ≤ 1 +D (G).

The lower bound follows since the lists could be identical, and the upper
bound has the same proof as Theorem 7. Brooks’ Theorem extends to list
coloring.

Theorem 20. (Brooks’ Theorem for list coloring) If G is connected,
then χl (G) = 1 +4 (G) if and only if G is complete or an odd cycle.

Borodin [9] and Erdős, Rubin, and Taylor [19] originally proved this as part
of a more general result with a longer proof. It was also proved by Vizing
[34]. See [35] for a fairly short proof.

Corollary 8 and Lemma 11 generalize to list coloring by replacing χ with
χl in their statements and proofs.

Corollary 21. [19] For any graph G, χl (G) + χl
(
G
)
≤ n+ 1.

Proof. We have χl (G)+χl
(
G
)
≤ 1+D (G)+1+D

(
G
)
≤ n−1+2 = n+1.

The extremal decompositions for list coloring include a larger class of
graphs. LetH be a graph and let f (H) be the smallest k so that χl

(
H +Kk

)
>

n (H). This function is well-defined since χl (Kr,rr) = r+1. Dantas, Gravier,
and Maffray [17] proved the following, phrased in terms of conditions on a
graph, not in terms of decompositions. Their proof is about 5 pages.

Theorem 22. [17] Let H be a graph and let f (H) be the smallest k so
that χl

(
H +Kk

)
> n (H). A 2-decomposition

{
G,G

}
of Kn has χl (G) +

χl
(
G
)

= n + 1 if and only if the critical subgraphs are
{
Ks+k, H +Kk

}
or

{C5 +Kp, C5 +Kn−p−5}.

Proof. (⇐) We see χl (Ks+k) +χl
(
H +Kk

)
= s+ k+n (H) + 1 = n+ 1 and

χl (C5 +Kp) + χl (C5 +Kn−p−5) = 3 + p+ 3 + (n− p− 5) = n+ 1.
(⇒) Assume that we have an extremal 2-decomposition with critical sub-
graphs G and H. They must overlap on some nonempty set of vertices S2.
Let S1 be the set of vertices only in G, and let S3 be the set of vertices only
in H. Let Gi be G restricted to Si, and similarly for H. Let ni = |Si|.

Now if G2 and H2 are not regular, we have D (G)+D (H) < n2−1+n1 +
n3 = n − 1, and χl (G) + χl (H) < n + 1. Now by Brooks’ Theorem for list
coloring, the only connected regular graphs achieving χ (G) = 1 +D (G) are
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cliques and odd cycles. The only such graphs whose complements also achieve
the upper bound are are Kr and C5. Thus the decomposition restricted to
S2 is

{
Kr, Kr

}
or {C5, C5}.

In the first case, say G2 = Kr. Note that χl (H) ≤ 1 + n3 and χl (G) ≤
n1+n2. For the decomposition to be extremal, these must both be equalities.
Thus G = Kn1+n2 . Now every edge joining S2 and S3 must be in H, or else
δ (H) < n3. Also,n2 must be large enough that χl

(
H3 +Kn2

)
> n3. Thus

n2 ≥ f (H3).
In the second case, χl (G) ≤ n1 +3. For this to be an equality, every edge

joining S1 and S2 must be in G, or else δ (G) < n1 + 2. Also, every edge in
S1 must be in G, since χl ((Kn1 − e) + C5) = n1 +2 (this follows from results
in [19] or [22]). The argument is similar for H.

This theorem implies Theorem 12 as a corollary.
The function f (H) was further explored in [23], but has not been com-

pletely characterized. They showed that f (Kn) = 1 and f (H) ≥ n2 for
H ⊂ Kn with order n. This along with Lemma 4 implies the following.

Corollary 23. For any graph G, χl (G) · χl
(
G
)
≤
(
n+1
2

)2
. The bound is

attained exactly for
{
Kn+1

2
, Kn+1

2

}
and

{
C5 +Kn−5

2
, C5 +Kn−5

2

}
.

5. L (2, 1) Labeling

Another type of vertex coloring restricts the differences between colors of
vertices at different distances.

Definition 24. An L (2, 1) coloring c of a graph G is an assignment of
colors (nonnegative integers) to the vertices of G such that if u and w are
adjacent vertices of G, then |c (u)− c (w)| ≥ 2 while if d (u,w) = 2, then
|c (u)− c (w)| ≥ 1. Given an L (2, 1) coloring c of a graph G, the c-span of
G is λ2,1 (c) = max

u,w∈G
|c (u)− c (w)|. The span of G is λ (G) = min {λ2,1 (c)}.

Griggs and Yeh [24] proved a basic upper bound.

Proposition 25. For any graph G, λ (G) ≤ n+ χ (G)− 2.

It is not hard to show that equality holds exactly for complete multipartite
graphs with order n (see [15]).

Balakrishnan and Deo [2] determined a Nordhaus-Gaddum theorem for
span, including the bound λ (G) + λ

(
G
)
≤ 3n − 3. However, this is not

sharp.
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Theorem 26. For any graph G with order n ≥ 2, λ (G) + λ
(
G
)
≤ 3n − 4.

The extremal 2-decompositions are {K1,n−1, Kn−1}.

Proof. By Proposition 25 and the Nordhaus-Gaddum Theorem,

λ (G) + λ
(
G
)
≤n+ χ (G)− 2 + n+ χ

(
G
)
− 2

≤2n− 4 + (n+ 1)

=3n− 3.

For the bound to be an equality, both G and G must be complete multipartite
graphs with order n. However, the complement of a complete multipartite
graph is a disjoint union of complete graphs. This is only a complete multi-
partite graph when n = 1. Thus λ (G) + λ

(
G
)
≤ 3n− 4 holds when n ≥ 2.

For this to be an equality, one of the factors (say G) must be a complete
multipartite graph with order n. Then G must have a component with order
n− 1, so {K1,n−1, Kn−1} is the only extremal decomposition.

The product upper bound follows from Lemma 4.

Corollary 27. For any graph G with order n ≥ 2, λ (G) · λ
(
G
)
≤ (3n−4)2

4
.

This is only attained when n = 4.

6. Vertex Arboricity and Point Partition Number

Proper vertex coloring studies partitioning the vertex set of a graph into
independent sets, which are 0-degenerate graphs. Thus it is a natural ques-
tion to consider partitions of the vertices of a graph into sets that induce
k-degenerate graphs.

Theorem 28. Let G be a graph and k1, ..., kt be nonnegative integers with∑
ki ≥ D (G) − t + 1. Then the vertices of G can be partitioned into sets

V1, ..., Vt so that D (G [Vi]) ≤ ki.

Proof. Let k = D (G), and consider the reverse of a deletion sequence for G.
We use induction on order n. The result is clear for the first vertex. Assume
that for the first r vertices, there is a vertex partition with each set having
D (G [Vi]) ≤ ki. The next vertex v added is adjacent to at most k existing
vertices. If v had at least ki + 1 neighbors in Vi for all i, k ≥

∑
(ki + 1) =
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∑
ki + t, a contradiction. Thus the Pigeonhole Principle says there is some

(possibly empty) set Vi of vertices with D (G [Vi]) < ki. Adding v to this set,
we find D (G [Vi ∪ v]) ≤ ki. Thus the result holds for G by induction.

In the case when k1 = ... = kt, the following definition is natural.

Definition 29. The point partition number ρk (G) is the minimum num-
ber of sets into which the vertices of a graph G can be partitioned so that
each set induces a k-degenerate graph. The vertex arboricity of G is
a (G) = ρ1 (G).

Point partition numbers were first introduced in 1970 by Lick and White
[26] in the same paper that introduced k-degenerate graphs. It is immediate
that χ (G) = ρ0 (G) ≤ ρ1 (G) ≤ ρ2 (G) ≤ . . . ≤ ρk (G) ≤ . . ..

There was a flurry of research on these numbers in the 1970s. Surveys of
results on these numbers appear in [31] and [7]. The following generalization
of the Degeneracy bound follows immediately from Theorem 28.

Corollary 30. [26] For any graph G, ρk (G) ≤ 1 +
⌊

1
k+1

D (G)
⌋
.

This bound is exact whenever 0 ≤ D (G) ≤ 2k + 1 since any graph with
k + 1 ≤ D (G) ≤ 2k + 1 is not k-degenerate, but the upper bound is two.
The corresponding bound for vertex arboricity was proved by Chartrand and
Kronk [13].

Definition 31. A graph is d-critical with respect to ρk if ρk (H) < ρk (G) =
d for any proper subgraph H ⊂ G.

Corollary 30 implies a short proof of the following result from [26].

Corollary 32. [26] If G has ρk (G) = d and is critical with respect to point
partition number, then δ (G) ≥ (k + 1) (d− 1).

Proof. Assume to the contrary that d (v) ≤ (k + 1) (d− 1) − 1. Since G is
critical, G− v has a vertex partition inducing d− 1 k-degenerate graphs. By
the Pigeonhole Principle, v is adjacent to at most k vertices of one of them.
But then ρk (G) = d− 1, a contradiction.

There is a Nordhaus-Gaddum theorem for point partition number due to
Lick and White [27], whose proof is about 1.5 pages. We present a much
shorter proof.
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Theorem 33. For any graph G, ρk (G) + ρk
(
G
)
≤
⌊
n+1+2k
k+1

⌋
.

Proof. By Corollary 30 and Theorem 3,

ρk (G) + ρk
(
G
)
≤1 +

⌊
1

k + 1
D (G)

⌋
+ 1 +

⌊
1

k + 1
D
(
G
)⌋

≤2 +

⌊
1

k + 1

(
D (G) +D

(
G
))⌋

≤2 +

⌊
n− 1

k + 1

⌋
=

⌊
n+ 1 + 2k

k + 1

⌋
.

The corresponding result for vertex arboricity is due to Mitchem [28],
where it has a 1-page proof. Mitchem also showed that this bound is sharp.

There is also a generalization of Brooks’ Theorem for point partition
number, due to Mitchem [29]. The corresponding result for vertex arboricity
is due to Kronk and Mitchem [25], and a short proof using degeneracy is in
[5].

Theorem 34. [29] If G is connected, then ρk (G) = 1+ 1
k+1
4 (G) if and only

if G is
1. Kt(k+1)+1

2. k + 1-regular
3. an odd cycle, when k = 0.

As before, we say that a decomposition is fundamental if deleting any
vertex reduces the parameter (in this case, point partition number) in both
factors.

Lemma 35. A fundamental 2-decomposition
{
G,G

}
of Kn has ρk (G) +

ρk
(
G
)

= n+1+2k
k+1

if and only if it is one of the following.
1. {K1, K1} for all k
2.
{
G,G

}
where G is k + 1-regular of order 2k + 3 with k ≥ 1 odd

3. {C5, C5} for k = 0
The only other decomposition into spanning regular graphs that attains

the bound is
{
Kt(k+1)+1, Kt(k+1)+1

}
.

12



Proof. (⇐) Clearly ρk (K1) + ρk (K1) = 2, and if G is k + 1-regular of order
2k + 3, ρk (G) + ρk

(
G
)

= 4 = 2k+3+1+2k
k+1

, so these decompositions satisfy
the equation. They are fundamental since no vertex can be deleted from the
first, and deleting a vertex from the second reduces the sum to 2.

(⇒) Consider a fundamental 2-decomposition
{
G,G

}
. Then both graphs

are connected. Let ρk (G) = r, so that ρk
(
G
)

= n+1+2k
k+1

− r. Then δ (G) ≥
(k + 1) (r − 1) and δ

(
G
)
≥ (k + 1)

(
n+1+2k
k+1

− r − 1
)

= n+1+2k−(k + 1) (r + 1).
Now for any vertex v, n−1 = (k + 1) (r − 1)+(n+ 1 + 2k − (k + 1) (r + 1)) ≤
δ (G) + δ

(
G
)
≤ dG (v) + dG (v) ≤ n− 1. Thus we have equalities, so G and

G must be regular.
Now Theorem 34 gives the only connected regular graphs achieving ρk (G) =

1 + 1
k+1
4 (G). The only such graphs whose complements are connected and

also achieve the upper bound are are K1, a k+1-regular graph of order 2k+3
with k ≥ 1 odd, and C5 for k = 0. Thus the fundamental 2-decompositions
are as stated.

If the decomposition need not be fundamental, one of the two factors
must still be connected and Brooks’ Theorem applies. The only possibility
remaining is

{
Kt(k+1)+1, Kt(k+1)+1

}
.

We can now describe all extremal 2-decompositions for the upper bound
of the Nordhaus-Gaddum theorem for point partition number.

Theorem 36. A 2-decomposition
{
G,G

}
of Kn has ρk (G)+ρk

(
G
)

= n+1+2k
k+1

if and only if the critical subgraphs are one of the following.
1.
{
G2 +K(k+1)p, G2 +K(k+1)q

}
where G2 is k+1-regular of order 2k+3

with k ≥ 1 odd
2.
{
K(k+1)p+1, K(k+1)q+1

}
3.
{
K(k+1)r+1, H3 +Kk+1−d

}
, where n (H3) = k + 1, δ (H3) = d, and H3

has no adjacent vertices with degree more than d
4. {C5 +Kp, C5 +Kn−p−5} for k = 0

Proof. (⇐) In case 1, n = (k + 1) p+(k + 1) q+2k+3 = (k + 1) (p+ q + 2)+1
and

∑
ρk = p+q+4. In case 2, n = (k + 1) p+(k + 1) q+1 = (k + 1) (p+ q)+

1 and
∑
ρk = p+q+2. In case 3, n = (k + 1) r+1+k+1 = (k + 1) (r + 1)+1

and
∑
ρk = r + 3. Case 4 is contained in Theorem 12. Thus in each case,

ρk (G) + ρk
(
G
)

= n+1+2k
k+1

.
(⇒) Assume that we have an extremal 2-decomposition with critical sub-
graphs G and H. They must overlap on some nonempty set of vertices S2.

13



Let S1 be the set of vertices only in G, and let S3 be the set of vertices only
in H. Let Gi be G restricted to Si, and similarly for H. Let ni = |Si|.

Since ρk (G) ≤ ρk (G1 +G2) ≤ ρk (G1) + ρk (G2), we have ρk (G) +
ρk (H) ≤ ρk (G1)+ρk (G2)+ρk (H2)+ρk (H3) ≤ n1

k+1
+ n2+1+2k

k+1
+ n3

k+1
= n+1+2k

k+1
.

Thus n1 and n3 are divisible by k + 1, and the decomposition of S2 consists
of spanning regular graphs, so it is one of those listed in Lemma 35.

If G2 and H2 are k + 1-regular of order 2k + 3 with k ≥ 1 odd then
G ⊆ G2 + K(k+1)p. Since G is critical, δ (G) ≥ (k + 1) (p+ 1). Thus all
edges incident with vertices of S2 are in G. Now ρk

(
G2 +

(
K(k+1)p − e

))
<

ρk
(
G2 +K(k+1)p

)
, so G = G2 +K(k+1)p. Similarly, H = G2 +K(k+1)q.

IfG2 = Kt(k+1)+1 andH2 = Kt(k+1)+1, then we must haveG = K(k+1)(t+p)+1,
which is critical. Also, H ⊆ K(k+1)t+1 + K(k+1)q, and since H is criti-
cal, δ (H) ≥ (k + 1) q. Thus all edges incident with vertices of S2 are in
H. When q ≥ 2, ρk

(
K(k+1)t+1 +

(
K(k+1)q − e

))
< ρk

(
K(k+1)t+1 +K(k+1)q

)
.

Thus K(k+1)q+1 is the only critical subgraph, so t = 0.
When q = 1, we must have δ (H) = k+ 1. Thus for some d ≥ 0, δ (H3) =

d, H3 has no adjacent vertices with degree more than d, and H = H3+Kk+1−d
is critical.

The case when k = 0, G2 = C5 and H2 = C5 was proved in Theorem
12.

When k = 0, this just yields Theorem 12. Restricted to vertex arboricity,
this theorem says the following.

Corollary 37. A 2-decomposition
{
G,G

}
of Kn has a (G) + a

(
G
)

= n+3
2

if
and only if the critical subgraphs are one of the following.

1. {K2p+1, K2q+1}
2. {C5 +K2p, C5 +K2q−4}
3. {C4, Kn−2}, n ≥ 5 odd

The product upper bound for point partition number follows from Lemma 4.

Corollary 38. A 2-decomposition
{
G,G

}
of Kn has ρk (G)·ρk

(
G
)

= 1
4

(
n+1+2k
k+1

)2
if and only if the critical subgraphs are one of the following.

1.
{
G2 +K(k+1)p, G2 +K(k+1)p

}
where G2 is k+1-regular of order 2k+3

with k ≥ 1 odd
2.
{
K(k+1)p+1, K(k+1)p+1

}
3.
{
Kk+2, H3 +Kk+1−d

}
, where n (H3) = k + 1, δ (H3) = d, and H3 has

no adjacent vertices with degree more than d

14



4.
{
C5 +Kn−5

2
, C5 +Kn−5

2

}
for k = 0
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