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Abstract

We consider upper and lower bounds for γ (G) +γ
(
G
)
, the sum of the genus

of a graph and its complement. For the lower bound, we show γ (G) +
γ
(
G
)
≥
⌈

1
12

(n2 − 13n+ 24)
⌉
. Furthermore, we construct an infinite family

of graphs attaining this bound along with several other isolated examples.
We provide a construction to show that γ (G)+γ

(
G
)

can be at least as large
as 1

48
(5n2 − 52n+ 144), and determine sharp upper bounds for a few small

orders. Some asymptotic results are considered.
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1. Introduction

One common way to study a graph parameter p (G) is to examine the
sum p (G) + p

(
G
)

and product p (G) · p
(
G
)
. A theorem providing sharp

upper and/or lower bounds for this sum and product is known as a theorem
of the Nordhaus-Gaddum class. Of the four possible bounds, the sum upper
bound has attracted the most attention. We will examine both sum bounds
for genus. (See [8] for background on genus; see [7] for basic definitions and
notation.)

It is convenient to consider a graph and its complement as a decomposi-
tion of a complete graph. This makes it possible to generalize the problem
to more than two factors. This problem has been previously considered in
[6].
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Definition 1. A k-decomposition of a graph G is a decomposition of G into
k ≥ 2 factors. For a graph parameter p, let p (k;G) denote the maximum of∑k

i=1 p (Gi) over all k-decompositions of G.

Hence we use the notation γ (k;Kn) to denote the maximum of
∑k

i=1 γ (Gi)
over all k-decompositions of Kn. (Since Gi may be disconnected, we al-
low embedding on disconnected surfaces.) We will tend to describe a k-
decomposition as {H1, ..., Hk}, where each Hi is a critical factor of the de-
composition.

It is trivial that
∏k

i=1 γ (Gi) ≥ 0 and this bound is sharp for all orders.
The decompositions that attain equality are exactly those in which at least
one of the factors is planar. Little is currently known about an upper bound
for
∏k

i=1 γ (Gi). The rest of this project focuses on upper and lower bounds

for
∑k

i=1 γ (Gi).

2. The sum upper bound

For genus, it is obvious that γ (k;Kn) = 0 for 1 ≤ n ≤ 4. Is it easily
checked that γ (k;Kn) = 1 for 5 ≤ n ≤ 7 since the complements of K5 +K2

(K2 ∨K5), K3,3 +K1 (K1 ∨ 2K3), and of the graphs formed by subdividing
edges of K5 and K3,3 up to order 7 are planar. (Note that + indicates disjoint
union, and ∨ indicates join.)

Proposition 2. We have γ (k;K8) = 2.

Proof. The decompositions {K8}, {K3,3, K2 ∨ 2K3},
{
K5, K3 ∨K5

}
all show

γ (k;K8) ≥ 2. Now Duke and Haggard [5] characterized all minimal graphs
with order 8 and genus two, namely K8 − K3, K8 − (K2 + P3), K8 − K2,3.
The complements of these graphs are all planar.

If there are three nonplanar graphs which decompose K8, their sizes
sum to 28. It is easily checked that the triples of graphs {K3,3, K3,3, K3,3},
{K3,3, K3,3, K3,3 ∼ e}, {K3,3, K3,3, K5} (where K3,3 ∼ e is a subdivistion
of K3,3) are the only possibilties and none of them decompose K8 since
some vertex would have degree at least 3 in each of the factors. Hence
γ (k;K8) = 2.

Certainly γ (k;Kn) ≥ γ (Kn). We show that no decomposition into genus
one graphs can produce γ (k;Kn) > γ (Kn).

Lemma 3. K10 does not decompose into five copies of K3,3.
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Proof. Suppose that such a decomposition D exists. Let D′ be the decom-
position induced by the six vertices of the factor G1 = K3,3. Now no other
factor of D′ can contain two independent edges, so the other four factors of
D′ must be two P3’s and two K2’s. Now each vertex of D is contained in
three factors. Let v be a vertex of D′ that contains the central vertex of one
of the P3’s. There must be another factor containing v in D, and it cannot
be any of the existing five since the edges to the parts of them contained in
D′ have already been used. But this requires six factors, a contradiction.

Theorem 4. Kn decomposes into at most γ (Kn) nonplanar graphs.

Proof. We have already seen that this is true for 1 ≤ n ≤ 8. For n = 9,
γ (K9) = 3 and m (K9) = 36 (where m (G) is the number of edges of G), so
the only possibility to check is four K3,3’s. But then some vertex would have
degree 9 in the decomposition. For n = 10, γ (K10) = 4 and m (K10) = 45,
so the only possibility is five K3,3’s, which is impossible by the lemma.

For n = 11, γ (K11) = 5 and m (K11) = 55, so any counterexample must
have five K3,3’s and one other nontoroidal graph. But then some vertex would
have degree at least 12 in the decomposition.

For n = 12, γ (K12) = 6 and m (K11) = 66, so any counterexample must
have seven topological K5’s or K3,3’s. Let x be the number of TK5’s and y be
the number of TK3,3’s. Then x+y = 7. Now at most three vertices of degree
at least 3 occur at a given vertex of the decomposition, so 5x+6y ≤ 3·12 = 36.
Combining these two conditions implies x ≥ 6. But then three vertices of
degree four occur at some vertex of the decomposition, which is impossible.

Since the minimum size of a nonplanar graph is 9, Kn can decompose
into at most 1

9

(
n
2

)
= n(n−1)

18
nonplanar graphs. We show that for n ≥ 13,

γ (Kn) =
⌈

(n−3)(n−4)
12

⌉
≥
⌊

n(n−1)
18

⌋
. This will occur when (n−3)(n−4)

12
+ 11

12
≥

n(n−1)
18

. This implies that 3 (n2 − 7n+ 23) ≥ 2 (n2 − n), so n2−19n+69 ≥ 0.

Then n ≥ 19+
√

192−4·69
2

> 14. It is easily checked that the inequality also
holds for 13 ≤ n ≤ 14.

A lower bound on the size of graphs with genus k ≥ 1 would help to
address this problem. If is easily seen that for n ≥ 6, m = n + 3 is the
smallest size of a critical nonplanar graph. The size of the smallest order 8
genus 2 graph, K8 −K2,3, is 22.

There is a construction for which γ (k;Kn) > γ (Kn) for large enough n.
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Theorem 5. For n ≥ 5, we have

5n2 − 52n+ 143

48
≤ γ (2;Kn) ≤ 2

⌈
(n− 3) (n− 4)

12

⌉
.

Proof. This is easily checked for n = 5. For n even, consider the decomposi-
tion is

{
Kn

2
, n
2
, 2Kn

2

}
. This gives

2∑
i=1

γ (Gi) =

⌈
1

4

(n
2
− 2
)2
⌉

+ 2

⌈
1

12

(n
2
− 3
)(n

2
− 4
)⌉

=

⌈
(n− 4)2

16

⌉
+ 2

⌈
(n− 6) (n− 8)

48

⌉
≥ 5n2 − 52n+ 144

48
.

If n is odd, consider the decomposition
{
Kn+1

2
, n−1

2
, Kn+1

2
+Kn−1

2

}
. This gives

2∑
i=1

γ (Gi) =

⌈
1

4

(
n+ 1

2
− 2

)(
n− 1

2
− 2

)⌉

+

⌈
1

12

(
n+ 1

2
− 3

)(
n+ 1

2
− 4

)⌉
+

⌈
1

12

(
n− 1

2
− 3

)(
n− 1

2
− 4

)⌉
=

⌈
1

16
(n− 3) (n− 5)

⌉
+

⌈
1

48
(n− 5) (n− 7)

⌉
+

⌈
1

48
(n− 7) (n− 9)

⌉
≥ 5n2 − 52n+ 143

48
.

For the upper bound, note that each factor in the 2-decomposition has

genus γ (Gi) ≤
⌈

(n−3)(n−4)
12

⌉
.

Since 5
48

> 4
48

= 1
12

, this construction is superior to γ (Kn) for large
enough n. It is easily checked that the smallest value for which it is better
is n = 18. The upper bound seems unlikely to be very good.

For larger numbers of factors, we can increase the lower bound. Note that
γ
(
Kn

2
, n
2

)
≈ n2

16
. The remaining edges form two cliques of order n

2
, so we can

iterate this construction. If k factors are available, then

k∑
i=1

γ (Gi) ≈
1

16
n2 +

2

16

(n
2

)2

+ ...+
2k−2

16

( n

2k−2

)2

+
2k−1

12

( n

2k−1

)2
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=
n2

16

(
2− 1

2k−2
+

4

3

1

2k−1

)
=
n2

16

(
2− 1

3 · 2k−2

)
Thus for this construction, limk→∞

∑
γ (Gi) ≈ n2

8
.

3. The sum lower bound

3.1. Proving the bound

For 2-decompositions, we have the following result.

Lemma 6. Let
{
G,G

}
be a 2-decomposition of order n. Let the factors have

h K2-components together and j components with orders ni ≥ 3 together.
Then

γ (G) + γ
(
G
)
≥ j +

1

6

((
n

2

)
− h
)
− 1

2

j∑
i=1

ni.

and this is an equality when each of the j components is a triangulation.

Proof. For 1 ≤ i ≤ j, γi ≥ 1+ mi

6
−ni

2
([8] Corollary 6-14). Now

∑j
i=1mi+h =(

n
2

)
. Hence

γ (G)+γ
(
G
)

=

j∑
i=1

γi ≥
j∑

i=1

(
1 +

mi

6
− ni

2

)
= j+

1

6

((
n

2

)
− h
)
− 1

2

j∑
i=1

ni.

We would like to know how small this can be over all possible 2-decompositions.

Lemma 7. For n ≥ 4, there is a 2-decomposition that minimizes γ (G) +
γ
(
G
)

for which both factors are connected.

Proof. Let
{
G,G

}
be a 2-decomposition that minimizes γ (G) + γ

(
G
)

and

suppose G is connected and G is not. Now adding an edge between compo-
nents of a disconnected graph does not increase its genus, and removing an
edge from a graph cannot increase its genus. Hence we seek to move edges
from G to G until the latter is also connected. We show that it is possible
to do so without disconnecting G. This disconnection can only occur if the
edge e that is moved is a bridge. Now G can contain at most n− 1 bridges.

Suppose the smallest component ofG has order 2 ≤ r ≤ n
2
. Since r (n− r)

is maximized at r = n
2

and decreases as r decreases, there are r (n− r) > n−1
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edges in G joining that component to the rest of G. These cannot all be
bridges inG, so one of them can be shifted toG to unite two of its components
without disconnecting G. If G has an isolated component, then G contains
the n − 1 edges incident with it, and these are all bridges exactly when
G = Kn−1 + K1 and G = K1,n−1. But then for n ≥ 4, G and G can swap
edges so that both become connected without changing γ (G) + γ

(
G
)
.

Theorem 8. For n ≥ 3, any 2-decomposition
{
G,G

}
has

γ (G) + γ
(
G
)
≥
⌈

1

12

(
n2 − 13n+ 24

)⌉
.

Proof. This is easily checked for n = 3. By the lemma, among those decom-
positions that achieve the minimum for n ≥ 4 there is one which has both
factors connected. In Lemma 6, this yields j = 2, h = 0, and

∑j
i=1 ni = 2n.

Thus

γ (G) + γ
(
G
)
≥ 2 +

1

6

(
n

2

)
− 1

2
(2n) =

1

12

(
n2 − 13n+ 24

)
.

Note that this is only a linear term away from γ (Kn) =
⌈

1
12

(n2 − 7n+ 12)
⌉
,

which says that increasing the number of factors does not decrease the sum
of genera much.

3.2. Achieving the Bound

We now consider when this bound is sharp. The thickness of a graph is
the smallest number of planar factors that decompose a graph. It is known
[4] that

θ (Kn) =

{ ⌊
n+7

6

⌋
n 6= 9, 10

3 n = 9, 10
.

In particular, θ (K8) = 2. This can be seen by noting that the graphK3�K3−
v is planar and self-complementary. Hence the minimum of γ (G) + γ

(
G
)

is 0 for 1 ≤ n ≤ 8. However, since θ (K9) = 3, γ (G) + γ
(
G
)
≥ 1 for

n ≥ 9. For n = 9, {K3,3,3, 3K3} achieves γ (G) + γ
(
G
)

= 1. For n = 10,

{K2,2,2,2 + 2K1, 4K2 ∨K2} achieves γ (G) + γ
(
G
)

= 1.
For n = 12, the bound is 1 and achieving it requires a maximal pla-

nar graph whose complement is maximal toroidal. White and Anderson [1]
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state that it is unknown whether this is possible. The complement of the
icosahedron is nontoroidal, and there are more than 7000 other maximal pla-
nar graphs with order 12. However, the toroidal thickness θ1 (K12) = 2 [3],
meaning that K12 can be decomposed into two toroidal graphs. Hence the
minimum of γ (G) + γ

(
G
)

is either 1 or 2 for n = 12.
Beineke [3] has shown that θ2 (Kn) =

⌊
n+3

6

⌋
, which is the minimum

number of subgraphs, each embeddable on S2, whose union is Kn. For
n = 14, we have θ2 (K14) = 2, so for a decomposition achieving this bound,
γ (G) + γ

(
G
)

= 4.
The theory of current and voltage graphs can be used to construct decom-

positions that achieve the bound. See chapter 10 of [8] for details regarding
the use of voltage graphs. We now describe an infinite class of examples that
achieve the bound.

Theorem 9. The bound of Theorem 8 is attained for n = 12s+ 11.

Proof. The (index one) Ringel/Youngs current graphs for K12s+7, s ≥ 0,
satisfy the Kirkoff Current Law in Z∞ (see, for example, Figure 9-8 in [8]),
so the corresponding (dual) voltage graphs satisfy the Kirkoff Voltage Law
in Z∞. They have n = 1, m = 6s+ 3, r = r3 = 4s+ 2, with Γ = Z12s+7, and
∆ = {1, 2, ..., 6s+ 3}.

Now set Γ = Z12s+9, with the same ∆. Since gcd (12s+ 9, 6s+ 4) = 1,
G∆ (Γ) = C12s+9. The covering graph for the above voltage graph embedding
is G∆ (Γ) = K12s+9 − C12s+9. The covering embedding has n = 12s + 9,
m = (6s+ 3) (12s+ 9), and r = r3 = (4s+ 2) (12s+ 9), so the genus of this
embedding is k = 1 + 1

2
(m− n− r) = 1 + 1

2
(12s+ 9) (2s) = 12s2 + 9s+ 1.

Finally, consider the 2-decomposition
{
G∆ (Γ) +K2, C12s+9 ∨K2

}
, in which

the double wheel C12s+9 ∨K2 is maximal planar. Then

γ (G) +γ
(
G
)

= 12s2 + 9s+ 1 ≥
⌈

(12s+ 11) (12s− 2) + 24

12

⌉
= 12s2 + 9s+ 1

so the bound is achieved for n = 12s+ 11.

For example, consider n = 11, with 2-decomposition
{
C9 ∨ 2K1, C9 +K2

}
.

The voltage graph in the Figure below, using voltage group Γ = Z9, as gen-
erated by ∆ = {1, 2, 3}, so that the Cayley graph G∆ (Γ) = K9 − C9 shows
that γ (K9 − C9) = 1. Thus γ (G) + γ

(
G
)

= 1. Identification of opposite
edges of the square embeds the one-vertex voltage graph into the torus, with
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Figure 1: Voltage graph for n = 11.
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Figure 2: Voltage graphs for n = 13.

clockwise cycle permutation of edge labels (1, 4, 3, 8, 5, 6). This lifts so that
each of the nine covering vertices has this same clockwise cyclic ordering of
edge labels on its incident edges. The “bottom” triangle (3, 1,−4) given by
edge labels lifts to triangle (0, 3, 4) and its eight translates via Z9 given by
vertex labels. Similarly, the “top” triangle below produces nine more trian-
gles above. Thus the covering embedding is trianglular and gives the genus
of the graph.

The bound is also achieved for orders 13, 25, 37, and 49.
For n = 13, as shown in [1], consider Γ = Z13 and ∆ = {1, 3, 4}, so

∆ = {2, 5, 6}. Then both G∆ (Γ) and G∆ (Γ) are toroidal. See Figure 2 for
the voltage graphs used. Thus γ (G) + γ

(
G
)

= 2.

For n = 25, consider Γ = Z25, ∆ = {2, 7, 9}, and ∆ = {1, 3, 4, 5, 6, 8, 10, 11, 12}.
Then the voltage graph embeddings of Figure 3 imply γ (G) + γ

(
G
)

=
1 + 26 = 27.

For n = 37, consider the two arrays below, which we will call com-
plementary magic squares (in rows and columns). Note also that if ∆ =
{2, 4, 5, 7, 8, 9, 10, 12, 15} for the first array, then ∆ = {1, 3, 6, 11, 13, 14, 16, 17, 18}
for the second. We use the two arrays to give KVL triangles to find triangu-
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Figure 3: Voltage graphs for n = 25.

lar embeddings for G∆ (Z37) and for G∆ (Z37) = G∆ (Z37) respectively; each
has genus 38. Thus the pair of embeddings satisfies γ (G) + γ

(
G
)

= 76. We
show the two voltage graph embeddings in Figure 4.

15 -5 -10
-8 -4 12
-7 9 -2

3 16 18
11 -17 6
-14 1 13

For n = 49, consider Γ = Z49, ∆ = {15, 16, 18}, and ∆ = {1, ..., 14, 17, 19, ..., 24}.
Then the voltage graph embeddings in Figure 5 imply γ (G) + γ

(
G
)

=
1 + 148 = 149.

Note that the previous four values all satisfy n = 12s+ 1, which suggests
that they may be generalized to an infinite family.

Archdeacon and Grable [2] have shown that for a random graph G with
edge probability p = 1

2
and ε > 0, (1− ε) n2

24
≤ γ (G) ≤ (1 + ε) n2

24
. Since

the complement of a random graph is a random graph, for sufficiently large
order, there is a 2-decomposition satisfying γ (G)+γ

(
G
)
≤ (1 + ε) n2

12
. Hence

the bound in Theorem 8 is nearly best possible.
Based on these constructions, we offer the following conjecture.

Conjecture 10. For all n ≥ 11, the lower bound
⌈

1
12

(n2 − 13n+ 24)
⌉

of

γ (G) + γ
(
G
)

is attained by some graph G.

Acknowledgement. Thanks to Dan Archdeacon for his helpful suggestions.
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Figure 4: Voltage graphs for n = 37.
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