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Abstract

A Nordhaus-Gaddum theorem states bounds on p (G)+p
(
G
)
and p (G) ·p

(
G
)
for some

graph parameter p (G). Viewing
{
G,G

}
as a decomposition of Kn allows us to generalize

these theorems to decompositions of Kn with more than two factors. We determine the sum
upper bound for independence number, domination number, edge independence number,
maximum degree, edge chromatic number, and clique number. We also determine the
extremal decompositions for the product lower bound for chromatic number.

One common way to study a graph parameter p (G) is to examine the sum p (G) + p
(
G
)

and product p (G) · p
(
G
)
. A theorem providing sharp upper and lower bounds for this sum

and product is known as a Nordhaus-Gaddum theorem. The original Nordhaus-Gaddum
Theorem [12] dealt with chromatic number; there are now hundreds of analogous results for
other parameters. Of the four possible bounds, the sum upper bound has attracted the most
attention.

Many authors state when a bound in a Nordhaus-Gaddum theorem is an equality in terms
of conditions on a graph. This often leads to awkward characterizations, as authors try to
describe conditions on G as conditions on G. It is more convenient to think of G and G as a
decomposition of Kn.

Definition 1. A decomposition of G is a set of nonempty subgraphs, called factors, whose
edge sets partition E (G). The subgraphs are said to decompose G. A k-decomposition
of a graph G is a decomposition of G into k subgraphs. We use {G1, ..., Gk} to denote a
k-decomposition of G with factors Gi.

Aouchiche and Hansen [1] compiled a huge survey of Nordhaus-Gaddum theorems for 2-
decompositions (see also [6] and [5]). Framing Nordhaus-Gaddum theorems in terms of decom-
positions naturally leads to the question of finding similar theorems for decompositions with
more than two factors.

Definition 2. For a graph parameter p, let p (k;G) denote the maximum of
∑k

i=1 p (Gi) over
all k-decompositions of G.

This idea was introduced by Plesnik for chromatic number [13]. It was studied by Furedi
et al [10] for degeneracy, chromatic number, clique number, and list chromatic number. Their
results on degeneracy were extended in [3], and other parameters were considered in [2].
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Also in [3], it was observed that for the connectivity κ, edge-connectivity λ, minimum degree
δ, and degeneracy D (G), κ (k,Kn) ≤ λ (k,Kn) ≤ δ (k,Kn) ≤ D (k;Kn), and these are all
equalities for 1 ≤ k ≤ 4. It was further conjectured that κ (k,Kn) = λ (k,Kn) = δ (k,Kn) =
D (k;Kn) for all positive integers n and k.

Definitions of terms and notation not defined here appear in [4]. In particular, Kn is the
complete graph of order n, and K1,n−1 is the star of order n. Also, G is the complement of G.
We use n for the number of vertices when the context is clear.

1 Independence, Matchings, and Domination

In this section, we determine p (k;G) for parameters related to independence, matchings, and
domination. We start with the independence number α.

Proposition 3. For all positive integers n and k, α (k;Kn) = (k − 1)n+ 1.

Proof. Consider the decomposition
{
Kn,Kn, ...,Kn

}
. Then

∑
α (Gi) = (k − 1)n+ 1.

We use induction on order. Certainly α (k;K1) = k. Assume α (k;Kr) = (k − 1) r + 1, and let
D be a decomposition of G = Kr+1. Consider the decomposition D′ of G−v formed by deleting
v from each subgraph of D. If

∑
D′ α (Gi) < (k − 1) r + 1, then

∑
D α (Gi) ≤ (k − 1) r + k =

(k − 1) (r + 1) + 1. If
∑

D′ α (Gi) = (k − 1) r+ 1, then by the pigeonhole principle, some vertex
of Kr is contained in all k independent sets. Then v is contained in at most k − 1 independent
sets, so

∑
D α (Gi) ≤ (k − 1) r+1+(k − 1) = (k − 1) (r + 1)+1. In either case, the result holds

by induction.

Note that
{
Kn,Kn, ...,Kn

}
is not the only extremal decomposition. For k = 2, the extremal

decompositions are the same as those for
∑
ω (Gi) = n+1 by complementation. More generally,

if we have an extremal decomposition, we can produce another by either adding another Kn, or
adding a new vertex and joining it to all vertices of one factor.

Consider the domination number γ. Note that for any graph G, γ (G) ≤ α (G), so γ (G) +
γ
(
G
)
≤ α (G) + α

(
G
)
≤ n+ 1. Jaeger and Payan [11] first proved that γ (G) + γ

(
G
)
≤ n+ 1.

The extremal 2-decompositions are
{
Kn,Kn

}
, as shown by Borowiecki [7] and Cockayne and

Hedetniemi [8]. We can generalize these results to k factors.

Proposition 4. For all positive integers n and k, γ (k;Kn) = (k − 1)n + 1. The extremal
k-decompositions are

{
Kn,Kn, ...,Kn

}
.

Proof. We use induction on order. Certainly γ (k;K1) = k. Assume γ (k;Kr) = (k − 1) r + 1,
and let D be a k-decomposition of G = Kr+1. Let v be a vertex not in all k minimum dominating
sets of D (which must exist since not all factors are empty). Consider the decomposition D′ of
G− v formed by deleting v from each subgraph of D. Now

∑
D γ (Gi) ≤ (k − 1) r+ 1 + k− 1 =

(k − 1) (r + 1) + 1.
Equality requires D′ =

{
Kr,Kr, ...,Kr

}
. Now v only increases the domination number of a

factor if it is isolated in that factor, so all edges incident with v must be in a single factor. That
factor must be Kr, since adding all edges to another factor reduces its domination number to
1. Then D =

{
Kr+1,Kr+1, ...,Kr+1

}
.

The formula for edge independence number β depends on the edge chromatic number χ′.
Note that χ′ (Kn) = n for n odd and χ′ (Kn) = n− 1 for n even.

Proposition 5. For all positive integers n and k, β (k;Kn) =
⌊
n
2

⌋
min {k, χ′ (Kn)}.

Proof. A decomposition containing min {k, χ′ (Kn)} copies of
⌊
n
2

⌋
K2 shows that β (k;Kn) ≥⌊

n
2

⌋
min {k, χ′ (Kn)}. Equality must hold since β (Kn) =

⌊
n
2

⌋
and there are at most χ′ (Kn)

such factors.
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Next we consider the maximum degree ∆.

Proposition 6. For all positive integers n and k, 4 (k;Kn) =
(
n
2

)
−
(
n−k
2

)
.

Proof. Consider the decomposition with Gi = K1,max(n−i,0) and any extra edges distributed

arbitrarily. Then
∑
4 (Gi) =

∑n−1
i=max(n−k,0) i =

(
n
2

)
−
(
n−k
2

)
.

We use induction on order. If k ≥ n, then
∑

D4 (Gi) ≤
∑

Dm (Gi) =
(
n
2

)
. If k < n, assume

4 (k;Kr) =
(
r
2

)
−
(
r−k
2

)
, and let D be a decomposition of G = Kr+1. Let v be a vertex that

does not uniquely have maximum degree in any of the k subgraphs. Consider the decomposition
D′ of G − v formed by deleting v from each subgraph of D. Then adding v to the subgraphs
of D′ increases each maximum degree by at most one. Then

∑
D4 (Gi) ≤

(
r
2

)
−
(
r−k
2

)
+ k =(

r+1
2

)
−
(
r+1−k

2

)
. The result holds by induction.

When k = 2, the upper bound is 2n − 3, and this is attained exactly when one factor has
both a dominating vertex and a leaf. We will see that χ′ (k;Kn) is closely related to 4 (k;Kn).

Theorem 7. For all positive integers n and k,

χ′ (k;Kn) =

{
∆ (k;Kn) + 1 n− k ≥ 2 even

∆ (k;Kn) else
.

Proof. Consider the decomposition withGi = K1,max(n−i,0), 1 ≤ i < k, andGk = Kmax(n−k+1,1).

Then
∑
χ′ (Gi) =

∑n−1
i=max(n−k,0) i =

(
n
2

)
−
(
n−k
2

)
= ∆ (k;Kn) unless max (n− k + 1, 1) is odd

and at least 3. Then χ′ (Gk) = 4 (Gk) + 1, so
∑
χ′ (Gi) = ∆ (k;Kn) + 1.

To show that this is an equality, we use induction on n + k. When k = 1, G1 = Kn, and the
result is obvious. When 1 ≤ n ≤ 2, the result is also obvious. Consider a k-decomposition
D = {G1, ..., Gk} of Kn with k ≥ 2 and n ≥ 3, and assume the result holds for smaller values of
n+ k.
Let v have degree ∆ (G1) in G1. Delete v and all edges of G1 from D, and redistribute any edges
of G1 − v to other factors. This produces a k − 1-decomposition D′ = {H2, ...Hk} of Kn−1 so
that Gi ⊆ Hi for 2 ≤ i ≤ k. Note that χ′ (Gi) ≤ dGi (v) + χ′ (Gi − v) since each edge incident
with v could be colored with a distinct color if necessary. Summing, we see

∑
D χ
′ (Gi) ≤

n− 1 +
∑

D−v χ
′ (Gi − v) ≤ n− 1 +

∑
D′ χ′ (Hi). Note that D′ has (n− 1)− (k − 1) = n− k.

If n− k ≥ 2 is even, then by induction,∑
D

χ′ (Gi) ≤ n− 1 +
∑
D′

χ′ (Hi) ≤ n− 1 +

(
n− 1

2

)
−
(
n− k

2

)
+ 1 =

(
n

2

)
−
(
n− k

2

)
+ 1.

Otherwise,∑
D

χ′ (Gi) ≤ n− 1 +
∑
D′

χ′ (Hi) ≤ n− 1 +

(
n− 1

2

)
−
(
n− k

2

)
=

(
n

2

)
−
(
n− k

2

)
.

When k = 2 and n is even, the bound is 2n− 2, and it is attained by {K1,n−1,Kn−1}, and
up to n−3

2 independent edges can be deleted from the Kn−1.

2 Clique Number and Chromatic Number

The following result on the clique number was proved by Furedi et al [10] using induction on
n+ k. We present a shorter proof of their result.
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Theorem 8. (Furedi et al [10]) For all positive integers n and k with n ≥
(
k
2

)
, ω (k;Kn) =

n+
(
k
2

)
.

Proof. The decomposition of the line graph L (Kk) into k copies of Kk−1 has n =
(
k
2

)
and∑

ω (Gi) = k (k − 1) = n +
(
k
2

)
. When n >

(
k
2

)
, we increase

∑
ω (Gi) by one by iteratively

adding a new vertex and joining it to all vertices of any given clique.
Consider a k-decomposition of Kn. The subgraphs of the factors that are critical with respect

to ω are cliques; call them Gi. Now two cliques overlap on at most one vertex. Thus there are
at most

(
k
2

)
pairs of cliques that overlap. When r cliques overlap at vertex v,

(
r
2

)
pairs of cliques

overlap at v, and v is counted r times in
∑
ω (Gi). Thus

∑
ω (Gi) is maximized when each

vertex is contained in one or two cliques, so
∑
ω (Gi) ≤ n+

(
k
2

)
.

Note that
∑
ω (Gi) = n+

(
k
2

)
requires that each pair of cliques overlap on distinct vertices,

so the only extremal decompositions are those described in the proof.
It is immediate that χ (k;Kn) ≥ ω (k;Kn). In 1978, Jan Plesnik made the following conjec-

ture.

Conjecture 9. (Plesnik’s Conjecture [13]) For n ≥
(
k
2

)
, χ (k;Kn) = n+

(
k
2

)
.

For k = 2, this is just the Nordhaus-Gaddum theorem. Plesnik proved the conjecture for
k = 3 and determined a recursive upper bound of χ (k;Kn) ≤ n + t (k), where t (2) = 1 and

t (k) =
∑k−1

i=2

(
k
i

)
t (i). Thus t (3) = 3 and t (4) = 18. This implies a worse explicit bound

of χ (k;Kn) ≤ n + 2(k+1
2 ). In 1985, Timothy Watkinson [14] improved this upper bound to

χ (k;Kn) ≤ n + k!
2 . In 2005, Furedi et al [10] proved an improved upper bound for large k of

χ (k;Kn) ≤ n+ 7k. All of these bounds remain far from Plesnik’s conjecture, however.

3 Product Lower Bound for Chromatic Number

We now consider the product lower bound for chromatic number, which is part of the original
Nordhaus-Gaddum Theorem.

Proposition 10. (Nordhaus/Gaddum [12]) For any graph G with order n, χ (G) · χ
(
G
)
≥ n.

Proof. Let χ (G) = a, and for a given a-coloring of G, let H be a complete a-partite graph that
contains G. Then H is a disjoint union of complete graphs, one of which contains at least n

a

vertices. Then χ (G) · χ
(
G
)
≥ χ (H) · χ

(
H
)
≥ a · na = n.

The extremal graphs were determined by Finck [9], with a proof whose length is about 1
page. His characterization was somewhat inelegant; a nice characterization for the extremal
decompositions follows.

Corollary 11. [9] A 2-decomposition
{
G,G

}
of Kn has χ (G) · χ

(
G
)

= n if and only if

{bKa, aKb} ⊆
{
G,G

}
, for a, b ∈ N with ab = n.

Proof. Equality in the chain of inequalities in the previous proof requires that b = n
a is a natural

number, and every component of H is Kb. Thus aKb ⊆ G. Reversing the roles of the factors,
we similarly see that bKa ⊆ G. It is clear that both are always possible (e.g. by arranging the
vertices in an a× b array).

Plesnik [13] determined the same bound holds for k factors. We also describe the extremal
decompositions.

Theorem 12. For any decomposition {G1, ..., Gk} of Kn,
∏
χ (Gi) ≥ n.

A k-decomposition {G1, ..., Gk} of Kn has
∏
χ (Gi) = n if and only if there are ai with

∏
ai = n

so that n
ai
Kai ⊆ Gi, for all i.
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Proof. We use induction on k; the result is obvious when k = 1. Assume that
∏
χ (Gi) ≥ n

for any r − 1-decomposition. Consider an r-decomposition {G1, ..., Gr} of Kn. Let χ (Gr) = a.
For a given a-coloring of Gr, let Hr be a complete a-partite graph that contains Gr, and
Hi = Gi − E (Hr). Then Hr is a disjoint union of complete graphs, one of which contains at
least n

a vertices. Then by induction,

r∏
i=1

χ (Gi) = χ (Gr) ·
r−1∏
i=1

χ (Gi) ≥ χ (Hr) ·
r−1∏
i=1

χ (Hi) ≥ a ·
n

a
= n.

Equality in the previous chain of inequalities requires that n
a is a natural number, and

every component of Hr is Kn/a. Applying this argument repeatedly, we eventually find that if
χ (G1) = a1, then n

a1
Ka1

⊆ G1. By ordering the factors differently, we can similarly see that if
χ (Gi) = ai,

n
ai
Kai ⊆ Gi, for all i.

Note that n
ai
Kai
⊆ Gi, for all i is always possible. Arrange n vertices in a a1 × ...× ak grid

so that the sets of vertices that only vary in the ith coordinate induce cliques in Gi. This is the
only possible construction since any two cliques of distinct factors have at most one common
vertex, hence exactly one.
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