
BASIC RESULTS IN NUMBER THEORY

Divisibility and Modular Arithmetic

De�nition 1. Suppose a and b are integers. We say that a divides b, written a|b, if b = ac for some c ∈ Z. In this
case we also say that a is a divisor of b, and that b is a multiple of a.

Proposition 2. If a|b and b|c, then a|c.
If a | b and a | c, then a | (kb+ lc) for all k, l ∈ Z.

Theorem 3. (The Division Algorithm) Given integers a and b with b > 0, there exist unique integers q and r
for which a = qb+ r and 0 ≤ r < b.

The Division Algorithm is not actually an algorithm!

De�nition 4. Given integers a and b and n ∈ N, we say that a and b are congruent modulo n if n| (a− b). We
express this as a ≡ b mod n. If a and b are not congruent modulo n, we write this as a 6≡ b mod n.

Proposition 5. Let a, b, c, d ∈ Z and n ∈ N. If a ≡ b mod n and c ≡ d mod n, then a + c ≡ b + d mod n and
ac ≡ bd mod n.

Congruence mod n is a relation that partitions the integers into n disjoint sets called congruence classes.

Base Representations

When a number n = arar−1...a3a2a1a0 is written in decimal form, each digit is the coe�cient of a power of 10,

n = ar10
r + ar−110

r−1 + ...+ a310
3 + a210

2 + a110 + a0.

Numbers can also be written in other bases, such as base 2 (binary).
Congruences are useful to prove the following divisibility tests.

Proposition 6. Let the decimal representation of an integer n be n = arar−1...a3a2a1a0.
n is divisible by 2 if and only 2|a0.
n is divisible by 2k if and only 2k|ak...a0.
n is divisible by 3 if and only 3| (ar + ...+ a0).
n is divisible by 5 if and only 5|a0.
n is divisible by 9 if and only 9| (ar + ...+ a0).
n is divisible by 11 if and only 11| (±ar...− a3 + a2 − a1 + a0).

To prove this for 9, note that 10 ≡ 1 mod 9, so 10k ≡ 1k mod 9. Thus n ≡ 0 mod 9 if and only if
(an + ...+ a0) ≡ 0 mod 9.

Prime Numbers

De�nition 7. A number n ∈ N is prime if it has exactly two positive divisors, 1 and n. If n has more than two
positive divisors, it is called composite. (Thus n is composite if and only if n = ab for 1 < a, b < n.)

The primes less than 100 are listed below.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, ...

Proposition 8. If an integer n is composite, it has a factor at most
√
n.

Thus to check if p is prime, we can check whether all the primes up to
√
p are divisors. This is called trial

division. This is not e�cient for large numbers, but the divisibility tests help for small divisors.
If many small numbers are to tested for primality, the sieve of Eratosthenes can be used.

Theorem 9. There are in�nitely many prime numbers.

Proof. Assume to the contrary that there are �nitely many prime numbers p1, ... , pr. Let P = p1 · ... · pr +1. Now
none of p1, ... , pr can be factors of P , so it must be prime. This is a contradiction, so there are in�nitely many
prime numbers.
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Note that given primes p1, ... , pr, it is not the case that p1 · ... · pr +1 must be prime, only that all of its prime
factors are not amongst p1, ... , pr. Thus this is an existence proof, since it does not provide in�nitely many prime
numbers. Only �nitely many primes are known.

The largest known prime number (as of 2020) is 282589933 − 1.

Theorem 10. (Prime Number Theorem) Let pn be the nth prime number. Then lim
n→∞

pn

n·lnn = 1, so pn ≈ n·lnn.

An even better approximation for pn is Li (n) =
∫ n

2
dx
ln x .

There are arbitrarily large intervals with no prime numbers (e.g. [n! + 2, n! + n]).
There are many famous conjectures related to prime numbers.

Conjecture 11. (Goldbach's Conjecture [1742]) Every even integer greater than 2 is a sum of two prime
numbers.

This is due to Christian Goldbach. It is true for n < 4 · 1018.

Conjecture 12. (Twin Prime Conjecture) There are an in�nite number of pairs of twin primes (p and p+ 2).

Twin primes have the form 6k ± 1 (except 3 and 5).
Yitang Zhang [2013] proved that there are in�nitely many pairs of primes that di�er by N , where N < 70000000.

Others soon reduced this to N ≤ 246.

Unique Factorization of Integers

De�nition 13. The greatest common divisor of integers a and b, denoted gcd (a, b), is the largest integer that
divides both a and b. The least common multiple of non-zero integers a and b, denoted lcm (a, b), is the smallest
integer in N that is a multiple of both a and b.

An e�cient way to �nd the gcd is the Euclidean algorithm. This can also be reversed to �nd a linear
combination of a and b equal to gcd (a, b).

Theorem 14. (Bezout's identity) If a, b ∈ N, then there exist integers k and l for which gcd (a, b) = ak + bl.

This can be used to prove the following lemma.

Lemma 15. If a, b, c ∈ Z such that gcd (a, b) = 1 and a|bc, then a|c.

This has a corollary that can be proved by induction.

Corollary 16. If p is a prime and p|a1a2 · · · an, where each ai is an integer, then p|ai for some i.

This is key to proving uniqueness below. The existence is proved using strong induction.

Theorem 17. (Fundamental Theorem of Arithmetic) Every natural number n > 1 has a unique factorization
into primes, n = pn1

1 · · · p
nk

k .

The unique prime factorizations of two integers can be easily used to �nd their gcd and lcm. However, �nding
the prime factorizations is harder than using the Euclidean Algorithm.

The Multiplication Principle (of combinatorics) can be used to prove the following.

Proposition 18. The number of positive integer factors τ (n) of n = pn1
1 · · · p

nk

k is τ (n) = (n1 + 1) · · · (nk + 1).

The sum of positive integer factors σ (n) of n = pn1
1 · · · p

nk

k is σ (n) =
∏ p

ni+1

i −1
pi−1 .

De�nition 19. A number n ∈ N is perfect if it equals the sum of its positive divisors less than itself.

The �rst few perfect numbers are 6, 26, 496, 8128, 8589869056, ...

Theorem 20. A perfect number n is even if and only if n = 2p−1 (2p − 1), provided 2p − 1 is prime.

Prime numbers of the form 2p − 1 are known as Mersenne primes. It is unknown whether there are in�nitely
many Mersenne primes (as of 2020, only 51 are known).

It is unknown whether there is any odd perfect number. This is the oldest unsolved problem in math, dating
back to ancient Greece. No odd perfect number is less than 101500.
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Fibonacci Numbers

The Fibonacci numbers are de�ned as f1 = f2 = 1 and fn = fn−1 + fn−2.
The sequence starts 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... (You could also start with f0 = 0.)
The recursive de�nition facilitates many proofs by induction. The sum

∑n
k=1 fk = fn+2 − 1 can be proved this

way, or using a telescoping sum.

There is an explicit formula for the Fibonacci numbers: fn = 1√
5

(
1+
√
5

2

)n
− 1√

5

(
1−
√
5

2

)n
. Thus fn is the integer

closest to 1√
5

(
1+
√
5

2

)n
. The quantity 1+

√
5

2 is called the Golden Ratio.

The explicit formula can be derived by solving the recurrence relation or using generating functions.
Using the Euclidean algorithm on any Fibonacci number always yields a quotient of 1, so this is the worst case

scenario for this algorithm.

Sums of Powers

De�nition 21. A Pythagorean triple consists of a, b, c ∈ N such that a2 + b2 = c2. A triple with no common
factor is primitive.

Small examples of primitive triples are (3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (20, 21, 29), (12, 35, 37), and
(9, 40, 41).

Theorem 22. All primitive Pythagorean triples (a, b, c) with a2 + b2 = c2 are given by

a = m2 − n2
b = 2mn
c = m2 + n2

where m > n > 0, m and n are relatively prime, and m and n have opposite parity.

Every integer is the sum of four squares. Integers of the form 4a (8b+ 7) are not sums of three squares.
Pierre de Fermat claimed (circa 1637) that there is no solution to an + bn = cn for larger n. Fermat claimed

to have proven this theorem, but that the margin of the book he was reading was too small to contain the proof.
The quest to prove this motivated much of the development of the subject of number theory. Finally in 1995, after
seven years of work, British mathematician Andrew Wiles announced a proof.

Theorem 23. (Fermat's Last Theorem) For all numbers a, b, c, n ∈ N with n > 2, an + bn 6= cn.

His paper was 125 pages long, and employed very di�cult mathematics.
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