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De�nitions

De�nition

A 2-tone coloring of a graph assigns two colors to each vertex of a
graph so that adjacent vertices have no common colors and vertices
at distance two have at most one common color.
The label of a vertex is the pair of colors on a vertex.
A graph is 2-tone k-colorable if it can be 2-tone colored with k

colors.
The 2-tone chromatic number τ2 (G ) of a graph is the minimum
number of colors in any 2-tone coloring.
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Basic Bounds

Clearly τ2 (Kn) = 2n.
Thus 2ω (G )≤ τ2 (G )≤ 2n.
Also, τ2 (G )≥ 2n

α(G) .

Theorem

We have τ2 (G )≤ χ (G )+ χ
(
G 2
)
.

Proof.

Combining a proper vertex coloring of G and a proper coloring of
G 2 yields a 2-tone coloring of G.
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Complete Multipartite Graphs

Theorem

For the complete multipartite graph Ka1,a2,...,ar
,

τ2 (Ka1,...,ar
) =

r

∑
i=1

⌈
1+
√
1+8ai
2

⌉
.

Proof.

Each partite set cannot use any color in common with any other. In
a partite set, we need need r colors, where

(
r
2

)
≥ ai . Solving for r

gives the formula.
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Stars

Corollary

For the nontrivial star K1,s ,

τ2 (K1,s) =

⌈
5+
√
1+8s

2

⌉
.

Proof.

τ2 (K1,s) = 2+

⌈
1+
√
1+8s

2

⌉
=

⌈
5+
√
1+8s

2

⌉
.

Corollary

Let G have maximum degree 4. Then

τ2 (G )≥
⌈
5+
√
1+84
2

⌉
.
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Bridges

Theorem

Let G be a graph with a bridge e = uv. Let F1 and F2 be the

components of G − e containing u and v, respectively, and let

H1 = G [F1∪ v ], and H2 = G [F2∪u]. Then
τ2 (G ) = max{τ2 (H1) ,τ2 (H2)}.

Proof.

The two subgraphs can be colored to agree on the bridge without
con�ict.
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Trees

Theorem

Let T be a nontrivial tree with maximum degree 4. Then

τ2 (T ) =

⌈
5+
√
1+84
2

⌉
.

Proof.

By the theorem on bridges, the 2-tone chromatic number of a tree
is the maximum of the 2-tone chromatic numbers of all the stars it
contains.
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The Petersen Graph

Consider forming a graph whose vertices are the ten possible labels
for a 2-tone 5-coloring and all possible edges are added. This graph
is the Petersen graph. In fact, the Petersen graph can be de�ned
with just this labeling. Thus its 2-tone chromatic number is �ve, so
any subgraph of the Petersen graph is 2-tone 5-colorable.
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The Petersen Graph

Theorem

If a graph G has diameter at most four, then G is 2-tone 5-colorable

⇐⇒ G is a subgraph of the Petersen graph.

Proof.

We have seen that every subgraph of the Petersen graph is 2-tone
5-colorable.
If G is 2-tone 5-colorable, it is easily seen that two vertices with the
same label must be distance at least �ve apart, since otherwise
C4 = K2,2 could be colored with �ve colors. Thus if G has diameter
at most four, then no label can be repeated, so it is a subgraph of
the Petersen graph.

Allan Bickle 2-Tone Coloring and Petersen Covers



Cycles

De�nition

A 2-chord of a cycle to be a pair of vertices of the cycle whose
distance is two.

Theorem

The Petersen Graph has no 7-cycle.

Proof.

Suppose it has a 7-cycle. Then C7 has seven 2-chords, and each
must have at most one common color. Now 14 colors are used with
repetition, and each color can be used at most three times. Then
four colors are used three times, and one is used twice. But this
implies that C7 has at least eight 2-chords.
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Cycles

Theorem

For the cycle Cn,

τ2 (Cn) =

{
6 n = 3,4,7
5 else

.

Proof.

Certainly τ2 (Cn)≥ 5. Now the cycles of length 3, 4, and 7 are not
subgraphs of the Petersen graph. Now C3 = K3, and C4 can have
nonadjacent vertices share a color, so τ2 (C3) = τ2 (C4) = 6. Now
C7 can be labeled as below. The cycles of length 5, 6, 8, and 9 are
subgraphs of the Petersen graph, with labellings below represented
as broken cycles.
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Cycles

Proof.

−12−34−51−23−45−

−12−34−15−32−14−35−

−12−34−56−13−24−35−46−

−12−34−15−23−14−25−13−45−

−12−34−15−32−14−25−13−24−35−

Finally, for n ≥ 10, the cycle can be constructed by breaking and
attaching together cycles of length 5, 6, 8, and 9, which can be
done because the labellings above agree on the �rst three
vertices.

Allan Bickle 2-Tone Coloring and Petersen Covers



Regular Graphs

Theorem

If G is r -regular, r ≥ 2, then τ2 (G )≤ r2 + r .

Proof.

Let G be r -regular, r ≥ 2. Note that each vertex of G has at most
r + r (r −1) = r2 other vertices within distance two, so
4
(
G 2
)
≤ r2. Hence

τ2 (G )≤ χ (G )+χ
(
G

2
)
≤ (1+4(G ))+

(
1+4

(
G

2
))
≤ (1+ r)+

(
1+ r

2
)
.

By Brooks' Theorem, the middle inequality can be an equality only
when G or G 2 are complete or an odd cycle. Now for r ≥ 2,
τ2 (Kr ) = 2r ≤ r2+ r and τ2 (Cn)≤ 6≤ r2+ r . Now G 2 cannot be a
noncomplete odd cycle.
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Regular Graphs

Proof.

The only case in which we might have χ
(
G 2
)

=
(
1+ r2

)
is when

G 2 is complete with order 1+ r2. But this means that G must have
diameter 2 and girth 5, so G is a Moore graph. But Ho�man and
Singleton [1960] showed that the only Moore graphs with girth 5
occur when r = 2, 3, 7, and possibly 57 (this case is undecided).
The case r = 3 is the Petersen graph (PG ), which has
τ2 (PG ) = 5 < 12. The case r = 7 is the Ho�man-Singleton graph
(HS), for which χ (HS) = 4, so τ2 (HS)≤ 4+49 < 56. Finally,
Borodin and Kostochka [1977] showed that for a K4-free graph,
χ (G )≤

⌈
3
4
(4(G )+1)

⌉
, so if a graph M satis�es the �nal case

r = 57, then χ (M)≤ 44, so τ2 (M)≤ 44+572 < 57+572.

Conjecture

Let G have maximum degree 4. Then τ2 (G )≤ 24+2, with
equality only if G contains K4+1 or for 4= 2, C4 or C7.
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Joins

Theorem

For the join G +H,

τ2 (G +H)≥ τ2 (G )+ τ2 (H) .

If G and H have diameter at most 2, then this is an equality.

Proof.

No common color can be used in both subgraphs G and H of the
join. If G and H both have diameter at most 2, then so does
G +H. Therefore combining minimal colorings for G and H creates
no con�ict, so the bound is achieved.

The bound may not be exact because vertices that have distance
greater than two in G will have distance two in G +H.
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Joins

Theorem

Let n1 = n (G ), n2 = n (H). Then

τ2 (G +H)≥ τ2 (Kn1,n2) = ∑
i=1,2

⌈
1+
√
1+8ni
2

⌉
.

Proof.

G +H contains Kn1,n2 as a subgraph.

This bound appears to be good for sparse graphs, but it is unclear
exactly when it is an equality.
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Wheels

Theorem

τ2 (Wn) =


7 n = 5,6,8,9
8 n = 3,4,7,10−15

r +2
(
r−1
2

)
< n ≤

(
r
2

)
, r ≥ 6

.

Proof.

(sketch) The center vertex requires two colors, which cannot be
used on any other vertex. The �rst lower bound yields
τ2 (Wn) = 2+ τ2 (Cn) for 3≤ n ≤ 9 since these cycles can be
colored without repeating a label. The second lower bound requires
that every vertex of the cycle have a distinct label, so it requires at
least r colors if n satis�es

(
r−1
2

)
< n ≤

(
r
2

)
.
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Wheels

Proof.

Consider explicit colorings of cycles where no pair is repeated. First
consider the following broken cycle

−12−(56)−34−25−(36)−14−23−45−(26)−13−(46−15)−24−16−35−

Without the pairs in parentheses, we have a ten-cycle. The pairs in
parentheses can be 'inserted' into the cycle, preserving the
necessary properties. (The two pairs in a single set of parentheses
must be inserted at the same time.) This provides constructions up
to the 15-cycle, for which all pairs formed from six colors are used.
We next use induction on r to prove the existence of constructions
for larger values of n. Assume that for r ≥ 6, there exists a 2-tone
coloring of the cycle with

(
r
2

)
vertices using r colors, so that each

possible pair is used exactly once. We want to insert new pairs of
colors in between some of the existing pairs. Allowing color r +1
adds r new pairs to insert.
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Wheels

Proof.

We model this situation with a bipartite graph as follows. One
partite set is the r new labels to be added. The other partite set is
the

(
r
2

)
possible locations for insertion. An edge joins two vertices if

the particular label can be inserted in the particular location. We
seek a maximum matching in this bipartite graph.
It is straightforward to check that vertices in the location partite
set have degree r −4, and each vertex of the label partite set has
degree

(
r
2

)
−2(r −1) = 1

2
(r −1)(r −4).

This implies that the bipartite graph satis�es Hall's condition, so it
has a maximum matching. Thus the new pairs can be successively
inserted up to a cycle of length

(
r+1
2

)
. By induction, we have

constructions for all n ≥ 15.
Our constructions achieve one of the lower bounds in all but the
case n = 10, for which our construction is one larger. They cannot
be achieved in this case since the Petersen graph is
non-Hamiltonian.
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Petersen Covers

De�nition

A Petersen cover is a covering graph of the Petersen graph. That
is, it is a graph for which there is an onto homomorphism f from G

to the Petersen graph with the property that for each vertex v of G
the neighborhood of v maps bijectively onto the neighborhood of
f (v).
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Petersen Covers

Theorem

A cubic graph G has τ2 (G ) = 5 if and only if G is a Petersen cover.

Proof.

Let G be a cubic graph G with τ2 (G ) = 5. Then given a 2-tone
5-coloring of G , map all the vertices with the same label to the
vertex of the Petersen graph with that label. Now no edge of G is
mapped to a nonedge of the Petersen graph, since then it would
violate the labeling. No adjacent edges are mapped to the same
edge, since then there would be two vertices at distance two with
the same label. Thus G is a Petersen cover.
Let G be a Petersen cover. Label all the vertices that map to a
given vertex of the Petersen graph under the homomorphism with
the same label. This produces a 2-tone coloring of G .
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Petersen Covers

Corollary

A Petersen cover has order n = 10k, k a positive integer.

Proof.

Let G be a Petersen cover. Suppose k vertices receive label X in a
2-tone 5-coloring, and one of them is v . Then every other label
appears exactly once amongst the vertices within distance two of v ,
as in the Petersen graph. Further, none of these vertices is within
distance two of any other vertex with label X , since such vertices
must be distance at least �ve apart. By considering another label,
we see that the number of vertices receiving each label is the same.
Thus the order of G is a multiple of ten.

Corollary

If G is cubic, with order n 6= 10k, it is not 2-tone 5-colorable.
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Petersen Covers

De�nition

Let G be a graph containing vertices u, v , w , x , edges uv , wx , and
not containing edges uw , vx . A 2-switch is the operation that
deletes edges uv and wx and adds edges uw and vx .

Theorem

G is a Petersen cover if and only if it can be obtained by starting

with k disjoint copies of the Petersen graph and performing some

number of 2-switches on pairs of edges that join vertices with the

same labels.
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Petersen Covers

Proof.

Consider a graph produced by this process. The edges switched by
a 2-switch must still map to the same edge of the Petersen graph,
so the graph is a Petersen cover.
Let G be a Petersen cover. Consider aligning the vertices that map
to the same vertex of the Petersen graph in a column of k levels,
with one vertex of each type per level. By performing 2-switches, it
is possible to produce edges that all join vertices of the same level,
separating out k copies of the Petersen graph. Reversing the
sequence of 2-switches, we see that G can be constructed in this
way.

Allan Bickle 2-Tone Coloring and Petersen Covers



Petersen Covers

Theorem

Let G be a Petersen cover. Then

1. G does not contain a bridge.

2. If G contains a minimal 2-edge-cut, then performing a 2-switch

on those edges separates G into two components which are two

smaller Petersen covers.

3. If G has a minimal 3-edge-cut, it is trivial.

Proof.

(1 only) Performing a 2-switch on a pair of edges, of which at least
one is a bridge produces another pair of edges, at least one of
which is a bridge. Thus no bridge can be produced by the process
described in the previous theorem.
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Critical Graphs

De�nition

A graph G is t-tone k-critical if τt (G ) = k and for any proper
subgraph H of G , τt (H) < k .

Theorem

Let G be a graph containing P3 with vertices u and v not adjacent

and let e = uv. Then τ2 (G )− τ2 (G − e)≤ 1.

The proof breaks into three cases depending on the labels of u and
v .

Theorem

Aside from K1,4 and the 3-, 4-, and 7-cycles, any 2-tone 6-critical

graph G has 4(G ) = 3, δ (G ) = 2, and is 2-connected.
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Theta Graphs

We can characterize the 6-critical graphs in one particular family of
graphs. The theta graph θi ,j ,k is formed by taking paths of lengths
i , j , k and identifying them at their end-vertices. It necessarily
contains three cycles of lengths a = i + j , b = i +k , c = j +k . We
will use (i , j ,k) for θi ,j ,k .

Theorem

The theta graph θ1,2,2 has τ2 (θ1,2,2) = 7, and (3,3,3), (3,3,5),
(3,3,6), (4,4,4), (4,4,5), and (3,3,9), all have 2-tone chromatic

number 6. For all other theta graphs,

τ2

(
θi ,j ,k

)
= max{τ2 (Ca) ,τ2 (Cb) ,τ2 (Cc)}, where a = i + j ,

b = i +k, c = j +k.
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6-Critical Graphs

Theorem

There are in�nitely many 2-tone 6-critical graphs.

Proof.

We know that such graphs exist, and all but K1,4 contain cycles.
Assume to the contrary that the number of 2-tone 6-critical graphs
is �nite. Let g be the maximum girth of all such graphs. It is
well-known that there is a cubic graph with girth larger than g . If
its order is not a multiple of ten, it is not a Petersen cover. If it is,
subdivide an edge and join two copies of it by adding an edge
between the two vertices of degree two. The resulting graph is not
a Petersen cover. Either way, there is a cubic graph G of girth
more than g that is not a Petersen cover. Then its 2-tone number
is at least six, so it contains a 6-critical subgraph H, which also has
girth more than g . This is a contradiction.
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Cubic Graphs

Conjecture

Let G be a cubic graph. Then
1. τ2 (G ) = 8 if and only if G contains K4.
2. τ2 (G ) = 7 if and only if G contains K4− e and not K4.
3. τ2 (G ) = 6 if and only if G is not a Petersen cover and does not
contain K4− e.
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Thank You!

Thank you!
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