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History of t-Tone ColoringMath 645 (Summer 2009) taught by Ping Zhang - Classprojet of Niole Fonger, Josh Goss, Ben Phillips, and ChrisSegroves (FGPS) - assisted by Gary ChartrandBikle and Phillips (BP) work on the topi Summer 2009-2011- submit paper �t-Tone Colorings of Graphs� (2011)Bikle presents at onferenes - 41st Southeastern (2010) andMIGHTY LI (2011)Cranston, Kim, and Kinnersly (CKK) submit the paper �NewResults in t-Tone Coloring of Graphs� following up on ourwork (2011)Bal, Bennett, Dudek, and Frieze submit the paper �The t-tonehromati number of random graphs� (2012)Thanks to Ben Phillips for introduing me to the topi.Thanks to Drs. Gary Chartrand, Allen Shwenk, Doug West,and Ping Zhang for their advie.Allan Bikle 2-Tone Coloring and Petersen Covers



De�nitions
De�nitionA 2-tone oloring of a graph assigns two olors to eah vertex of agraph so that adjaent verties have no ommon olors and vertiesat distane two have at most one ommon olor.The label of a vertex is the pair of olors on a vertex.A graph is 2-tone k-olorable if it an be 2-tone olored with kolors.The 2-tone hromati number τ2 (G ) of a graph is the minimumnumber of olors in any 2-tone oloring.
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Upper BoundsProposition[FGPS 2009℄ We have τ2 (G )≤ χ (G )+ χ
(G 2).Theorem[BP 2010℄ Let a graph G have maximum degree ∆=∆(G )≥ 2.Then τ2 (G )≤∆2+∆.Theorem[CKK 2011℄ We have τ2 (G )≤

⌈2+√2⌉∆.Theorem[Bikle 2011℄ Let a graph G have maximum degree ∆=∆(G )≥ 2.Then τ2 (G )≤ 2∆−1+⌈1+√1+8∆(∆−1)2 ⌉.Allan Bikle 2-Tone Coloring and Petersen Covers
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JoinsFor the 2-tone hromati number of a join of graphs, we have thefollowing partial results.TheoremFor the join G +H, τ2 (G +H)≥ τ2 (G )+ τ2 (H).If G and H have diameter at most 2, then this is an equality.Proof.The inequality follows sine no ommon olor an be used in bothsubgraphs G and H of the join. If G and H both have diameter atmost 2, then so does G +H. Therefore ombining minimalolorings for G and H reates no on�it, so the bound is ahieved.The bound may not be exat beause verties that have distanegreater than two in G will have distane two in G +H. Theonverse is false, as for example W6 ahieves the bound eventhough the 6-yle has diameter 3.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair ColoringThus for any fator in a join, the verties must have a 2-toneoloring with the additional restrition that eah label must bedistint. This motivates the following de�nition.De�nitionA pair k-oloring is a 2-tone k-oloring in whih every label isdistint. A graph is pair k-olorable if it has a pair k-oloring. Thepair hromati number of a graph G , p (G ), is the smallest k forwhih it has a pair k-oloring.Some results on the pair hromati number are immediate. Wehave p (G )≥ τ2 (G ), and if diam (G )≤ 2, then this is an equality.Hene it is an equality for almost all graphs. If H is a subgraph ofG , then p (H) ≤ p (G ). It is not di�ult to show thatp (G + e)−p (G )≤ 1. It is also straightforward to see thatp (G +H) = p (G )+p (H).Allan Bikle 2-Tone Coloring and Petersen Covers



Pair ColoringA graph G is pair k-olorable ⇐⇒ it is ontained in Lk = L(Kk).Thus if n > (k2), p (G )> k . Equivalently, p (G )≥ 1+√1+8n2 . Thusp (K n)= ⌈1+√1+8n2 ⌉. This also implies that given n1 = n (G ) andn2 = n (H),
τ2 (G +H)≥ τ2 (Kn1 ,n2) = ∑i=1,2⌈1+√1+8ni2 ⌉

.sine G +H ontains Kn1,n2 as a subgraph. This bound appears tobe good for sparse graphs, but it is unlear exatly when it is anequality. Allan Bikle 2-Tone Coloring and Petersen Covers



Pair ColoringTheoremLet G have degeneray k ≤ n−1. Then
⌈1+√1+8n2 ⌉

≤ p (G )≤ 2k+⌈1+√1+8(n−k)2 ⌉.Proof.The lower bound has already been justi�ed. Color G with aonstrution sequene. Eah vertex v has j ≤ k neighbors whihexlude at most 2j olors. There are at most n− j−1 labels thathave already been used on non-neighbors of v . Thus we need rextra olors, where (r2)≥ n− j . Solving, we �nd r ≥ 1+√1+8(n−j)2 .Thus we need at most 2j+⌈1+√1+8(n−j)2 ⌉ olors to label v , whihis maximized when j = k .Allan Bikle 2-Tone Coloring and Petersen Covers



Pair ColoringThe upper bound is attained for the graph Kk +K n−k . Sine forestsare exatly the 1-degenerate graphs, we have the following orollary.CorollaryLet F be a forest. Then
⌈1+√1+8n2 ⌉

≤ p (F )≤ 2+⌈1+√1+8(n−1)2 ⌉.Thus there are usually three possible values for the pair hromatinumber of a forest, but there are only two for n = (r2)+1, r ≥ 2.Note that stars attain the upper bound. Charaterizing the treesthat attain the upper bound may be possible, but distinguishingbetween the other two values appears di�ult.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair ColoringPropositionLet F be a forest and let r be the smallest integer suh thatn ≤
(r2)+1. If ∆(F ) = (r−12 ), then p (F )≤ 1+⌈1+√1+8(n−1)2 ⌉.Proof.The result is easily heked for 1≤ n ≤ 7. Let F be a forest withorder n ≥ 8 and let r ≥ 5 be the smallest integer suh thatn ≤
(r2)+1. Add edges if neessary to form a tree T with the samemaximum degree. Let v be a vertex with degree (r−12 ), whihWLOG reeives label 12. Then its (r−12 ) neighbors must reeive allpossible labels from {3,4, ..., r +1}. Now F has at most r −1verties remaining, and 2(r −1) labels left. Label the remainingverties with a onstrution sequene.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair ColoringProof.If the i th vertex labeled is adjaent to a neighbor of v , then thereare at least2(r −1)− (i−1)−4= 2r − i−5≥ 2r − (r −1)−5= r −4> 0labels remaining. If the i th vertex labeled is not adjaent to aneighbor of v , then its neighbor u must have the olor 1 or 2, andeither exludes r −1 possible labels. The other olor on u exludesone more label. Sine u uses one of the labels already exluded, thepreeding i−1 verties exlude at most i−2 labels. Thus there areat least 2(r −1)− (r −1)−1− (i−2) = r − i ≥ r − (r −1) = 1labels remaining. Thus r +1 olors su�e to label T .Allan Bikle 2-Tone Coloring and Petersen Covers



Pair ColoringCorollaryLet G have degeneray k ≤ n−1. Then
⌈1+√1+8n2 ⌉

≤ p (G )≤ max0≤j≤k{2j+⌈1+√1+8(nj − j)2 ⌉}

.Proof.Color G with a onstrution sequene. Let the k-ore of G haveorder nk . If vertex v is the i th vertex olored and j = C (v) is theore number of v , then neighbors of v exlude at most 2j olors.There are at most nj − j−1 labels that have already been used onnon-neighbors of v . Thus we need r extra olors, where
(r2)≥ nj − j . Solving, we �nd r ≥ 1+√1+8(nj−j)2 . Thus we need atmost 2j+⌈1+√1+8(nj−j)2 ⌉ olors to label v . Maximize over j .Allan Bikle 2-Tone Coloring and Petersen Covers



Pair ColoringNote that this is no improvement for monoore graphs, but may bean improvement otherwise. For regular graphs, the followingorollary is an improvement.CorollaryLet G be a onneted graph with maximum degree ∆≥ 1. Then
⌈1+√1+8n2 ⌉

≤ p (G )≤ 2∆−1+⌈1+√1+8(n−∆+1)2 ⌉.Proof.Sine G is onneted, G − e is ∆−1-degenerate. By an earliertheorem, p (G − e)≤ 2(∆−1)+⌈1+√1+8(n−(∆−1))2 ⌉. Lastly,adding e bak requires at most one more olor.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsDe�nitionA graph G is pair k-ritial if for any proper subgraph H of G ,p (H) < p (G ) = k .For small values of k , it is possible to list all suh graphs.k Pair k-Critial Graphs2 K13 K 24 K 4, K25 K 7, P3
Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsIt is onsiderably more di�ult to determine all pair 6-ritialgraphs. We onsider this problem below. Note that for any k , thereis a �nite number of pair k-ritial graphs.PropositionAny graph G has �nitely many ritial forbidden subgraphs.Proof.Let G have order n. Then K n+1 is a ritial forbidden subgraph ofG , so any other ritial forbidden subgraph must have order atmost n. There are �nitely many suh graphs, some subset of whihare not subgraphs of G . Some subset of these are ritial.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsThere is another reason why pair olorings are interesting. Considerlabeling the verties of a omplete graph Kn with 1 to n. Theneah edge an be labeled with the pair of labels of its verties.Eah possible label ours exatly one. Thus a pair k-oloring of agraph orresponds to a (usually di�erent) edge-indued subgraph ofKk . Thus we an transform a question on pair k-oloring of adisonneted graph into a question on deomposition (or paking)of a omplete graph. As deompositions have been widely studied,results on them an be applied to pair oloring.Some examples of graphs and orresponding subgraphs for theirminimal olorings are given in the following table.
Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsGraph Corresponding SubgraphKn nK2C4 2P3C5 C5C6 K2,3C8 W4C9 K5− eP4 P5Ln KnK(r2),(s2) Kr ∪KsFor example, onsider a union of omplete graphs. Eah liquemust have no ommon olors on its verties. Thus its oloringorresponds to a mathing in a omplete graph. We employ thefollowing lemma. Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsLemma(adapted from de Werra 1971 and MDiarmid 1972)Let a1, ...,ak be integers with 1≤ a1 ≤ ...≤ ak ≤ ⌊n2⌋. If ∑ai ≤ (n2),then Kn has a paking with mathings of sizes ai .Proof.The extreme ase ours when there are n or n−1 mathings ofsize ⌊n2⌋. Suh a deomposition is well-known. Hene we supposethat we have a paking of Kn with mathings of sizes1≤ b1 ≤ ...≤ bk ≤ ⌊n2⌋, where ∑ai = ∑bi . If these numbers arenot all the same, there must be integers i < j suh thatbi < ai ≤ aj < bj . Form a subgraph H by merging mathings i andj together. H must have eah omponent be a path or even yle.Sine the two sizes of the mathings were unequal, H must have aomponent path of odd length. Swapping the edges on this path inthe mathings moves us loser to the goal. Applying this proessrepeatedly must ahieve it.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsTheoremLet a1, ...,ak be integers with 1≤ a1 ≤ ...≤ ak and n = ∑ai . Thenp(∪i Kai)=max{2ak ,⌈1+√1+8n2 ⌉}.Proof.Both lower bounds are immediate. Let N =max{2ak ,⌈1+√1+8n2 ⌉}.By the lemma, KN an be paked with mathings of sizes a1, ...,ak .Hene a pair N-oloring of ∪i Kai exists.CorollaryLet G be a disonneted graph with omponents Gi with ordersa1, ...,ak , 1≤ a1 ≤ ...≤ ak . Thenmax{p (Gi ) ,⌈ 1+√1+8n2 ⌉}

≤ p (G )≤max{2ak ,⌈ 1+√1+8n2 ⌉}.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsHene graphs for whih the lower inequality is strit are of interest.Suh a graph must have pair hromati number at least 6. All suhritial graphs are listed in the table below. This follows sine (1)none of these graphs are subgraphs of the Petersen graph and (2)the the orresponding deompositions do not pak K5.Graph Corresponding DeompositionT3−3∪P3 {K1+2K2,P3∪K2}C6∪2K2 {K2,3,2K2,2K2}C5∪K1,3 {C5,K3∪K2}2K1,3 {K3∪K2,K3∪K2}
Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsNow we an determine all pair 6-ritial graphs. We de�ne somenotation. Let Ta−b−...− be a tree (aterpillar) with a spine havingverties of degree a, b, ..., . Similarly, TPa−Pb−...−P is formed byappending paths of lengths a, b, ...,  to a path.TheoremThere are exatly 11 pair 6-ritial graphs, namely K 11, K1,4, 2K1,3,T3−3∪P3, T3−P4−3, K3, C4, C7, C10, C6∪2K2, C5∪K1,3.Desription Pair 6-Critial Graphsforests K 11, K1,4, 2K1,3, T3−3∪P3, T3−P4−3yles K3, C4, C7, C10disonneted C6∪2K2, C5∪K1,3Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsProof.[sketh℄ Certainly K 11 is pair 6-ritial, so any other suh graph hasorder at most 10. Now K1,4 is pair 6-ritial, so any other suhgraph has maximum degree at most 3.Consider forests. We have 2K1,3 6-ritial sine any two verties ofthe Petersen graph have distane at most two apart. Sine thePetersen graph has a Hamiltonian path, no path is 6-ritial.Cheking ases shows that no spider (exaly one vertex of degreethree) is 6-ritial. Cheking ases when there are exatly twoverties of degree three at distane two apart does not �nd any6-ritial graph. When there are two adjaent verties of degree 3,we �nd T3−3∪P3 is 6-ritial. Otherwise, heking ases showsthat T3−P4−3 is the only other 6-ritial forest.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsProof.Certainly the only 6-ritial yles are K3, C4, C7, C10. Nowonsider graphs ontaining a single yle. The yle C9 is not thebasis for any 6-ritial uniyli graph. Cheking ases for C8 doesnot produe any new 6-ritial graphs. For C6, we �rst �nd thedisonneted graph C6∪2K2. Cheking ases for onneted6-ritial uniyli graphs does not �nd any more. Starting with C5,we see C5∪K1,3 is a disonneted 6-ritial graph. Cheking aseswhen we onsider appening one, two, three, four, or �ve trees doesnot produe any new 6-ritial graphs.There are two 2-tone 6-ritial theta graphs (θ3,3,3 and θ3,3,5) withat most order 10, but both ontain 2K1,3. Cheking ases showsthat no graph formed by appending trees to a theta graph is6-ritial. Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Critial GraphsProof.Consider adding another path to a theta graph. There are twopossibilities. One produes two disjoint yles, the other produes asubdivided K4. Note �rst that any 6-ritial graph an be produed byadding an edge between nonadjaent verties of the Petersen graph andthen deleting some number of edges. It is easily seen that this numbermust be at least four sine adding the edge reates a 3-yle, two4-yles, several 7-yles, and two verties of degree 4 that must bedisrupted. Now two disjoint yles must be 5-yles, but heking asesdoes not produe any new 6-ritial graphs. Cheking ases organized bylength of the longest yle in a subdivided K4 also does not produe anynew 6-ritial graphs.Finally onsider disonneted graphs that are not forests and notuniyli. Begin by deleting a subgraph of small order and thenonsidering what other omponent ould be added to make the graph notpair 5-hromati, and whether the resulting graph is 6-ritial. Deletingone, two, or three verties produes nothing new. Deleting four or moreverties eliminates all but at most one yle. This exhausts the searh.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Coloring of CylesA nontrivial result on pair oloring onerns yles.TheoremWe have p (Cn) =









5 n = 5,6,8,96 n = 3,4,7,10−15
⌈1+√1+8n2 ⌉ n ≥ 11 .Proof.There are two relevant lower bounds to onsider. First,p (Cn)≥ τ2 (Cn). This is exat for 3≤ n ≤ 9 sine the uniqueminimal olorings for all but C7 do not repeat a pair and C7 has aminimal oloring that does not repeat a pair.The seond lower bound requires that every vertex of the ylehave a distint pair, so p (Cn)≥ ⌈1+√1+8n2 ⌉.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Coloring of CylesProof.We now onsider expliit olorings of yles where no pair is repeated.First onsider the following broken yle.
−12−(56)−34−25−(36)−14−23−45−(26)−13−(46−15)−24−16−35−Without the pairs in parentheses, we have a ten-yle. The pairs inparentheses an be 'inserted' into the yle, preserving the neessaryproperties. That is, we an subdivide some edges and assign previouslyunused pairs to the new verties. The two pairs in a single set ofparentheses must be inserted at the same time. This providesonstrutions up to the 15-yle, for whih all pairs formed from sixolors are used.We next use indution on r to prove the existene of onstrutions forlarger values of n. Assume that for r ≥ 6, there exists a 2-tone oloring ofthe yle with (r2) verties using r olors, so that eah possible pair isused exatly one. We want to insert new pairs of olors in between someof the existing pairs. Allowing olor r +1 adds r new pairs to insert.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Coloring of CylesProof.We model this situation with a bipartite graph as follows. Onepartite set is the r new pairs to be added. The other partite set isthe (r2) possible loations for insertion. An edge joins two verties ifthe partiular pair an be inserted in the partiular loation. Weseek a maximum mathing in this bipartite graph.Sine eah pair is distint, and eah pair uses the new olor r +1, apair an be inserted as long as the other olor is not one of the fourused on the verties between whih the new vertex will be inserted.Thus eah vertex in the loation partite set has degree r −4. Eahexisting olor is used r −1 times times on the yle. Sine theverties on whih it is used form an independent set, eah exludestwo loations, leaving (r2)−2(r −1) = 12 (r −1)(r −4) validloations, so this is the degree of the verties in this partite set.Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Coloring of CylesProof.Consider a subset S of new pairs of order s, and let itsneighborhood N (S) have order n. Thens [12 (r −1)(r −4)]≤ n (r −4), so n ≥ s. Thus the bipartite graphsatis�es Hall's ondition, so it has a maximum mathing. Thus thenew pairs an be suessively inserted up to a yle of length (r+12 ).By indution, we have onstrutions for all n ≥ 15.Our onstrutions ahieve one of the lower bounds in all but thease n = 10, for whih our onstrution is one larger. The boundannot be ahieved in this ase sine the Petersen graph isnon-Hamiltonian.Corollary
τ2 (Wn) =









7 n = 5,6,8,98 n = 3,4,7,10−15
⌈5+√1+8n2 ⌉ n ≥ 11 .Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Coloring of CylesAnother orollary follows immediately.CorollaryFor n ≥ 3, p (Pn) ={ 5 3≤ n ≤ 10
⌈1+√1+8n2 ⌉ n ≥ 11 .Proof.The path requires at least �ve olors, and enough so that everyvertex has a distint pair. For n ≥ 11, breaking the yleonstruted in the proof of the theorem for wheels yields theappropriate onstrution. For smaller values, the appropriateonstrution exists beause the Petersen graph has a hamiltonianpath. Allan Bikle 2-Tone Coloring and Petersen Covers



Pair Coloring of CylesThis implies:CorollaryConsider the fan Fn = Pn+K1, n ≥ 3. Then
τ2 (Fn) ={ 7 3≤ n ≤ 10

⌈5+√1+8n2 ⌉ n ≥ 11 .

τ2 (Pn+K2) ={ 9 3≤ n ≤ 10
⌈9+√1+8n2 ⌉ n ≥ 11 .ConjetureLet G be a 2-regular graph with n ≥ 7. Then

⌈1+√1+8n2 ⌉

≤ p (G )≤ 1+⌈1+√1+8n2 ⌉.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian ProdutsWe an also onsider 2-tone hromati numbers for artesianproduts of graphs. These are also di�ult to determine in general.We �rst onsider upper bounds.Note that if Gi has maximum degree ∆i and maximum orenumber/degeneray Di , then ∆(G1×G2) = ∆1+∆2 andD (G1×G2) = D1+D2 [Bikle 2010℄. We apply the tehnique of[CKK 2011℄.TheoremLet Gi have degeneray ki and maximum degree ∆i =∆i (G ).Further, let k = k1+ k2 andM =
(2∆1k1−∆1− k21)+ (2∆2k2−∆2− k22)+ k2∆1. Then

τ2 (G1×G2)≤ 2k+⌈1+√9+8M2 ⌉.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian ProdutsProof.Number the verties of Gi in inreasing order aording to aonstrution sequene. Number the verties of G1×G2lexiographially and arrange them in a grid. Consider aonstrution sequene of inreasing lexiographi order. ColorG1×G2 with this onstrution sequene, so eah vertex has atmost k neighbors whih exlude at most 2k olors. When olored,a vertex v has at most
(2∆1k1−∆1− k21)+ (2∆2k2−∆2− k22)+ k2∆1 =Mseond-neighbors already olored by an earlier theorem. The �rstterm refers to seond-neighbors in the same olumn, the seond toseond-neighbors in the same row, and the third toseond-neighbors whih have neither row or olumn in ommon.Thus we need r extra olors, where (r2)≥M+1. Solving, we �ndr ≥ 1+√9+8M2 . Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian ProdutsTheoremLet graphs G1 and G2 have maximum degrees ∆1 ≥∆2 ≥ 1,
∆1 ≥ 2, and let ∆=∆(G1×G2) = ∆1+∆2. Then

τ2 (G1×G2)≤ 2∆−1+⌈1+√9+8(∆2−∆−∆2−∆1∆2)2 ⌉

.Proof.We may assume G1×G2 is onneted and regular. Number theverties of Gi in inreasing order aording to a onstrutionsequene. Number the verties of G1×G2 lexiographially andarrange them in a grid. Consider a onstrution sequene ofinreasing lexiographi order. Delete an edge e inident with thelast vertex of this sequene. Now G1×G2− e is
∆−1-degenerate. Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian ProdutsProof.Coloring it using a onstrution sequene, eah vertex has at most
∆−1 neighbors whih exlude at most 2(∆−1) olors. There areat most ∆1 (∆1−1)+ (∆2−1)2+∆1∆2−1=
(∆1+∆2)2− (∆1+2∆2)−∆1∆2 =∆2−∆−∆2−∆1∆2seond-neighbors already olored. The �rst term refers toseond-neighbors in the same olumn, the seond toseond-neighbors in the same row, and the third toseond-neighbors whih have neither row or olumn in ommon.Thus we need r extra olors, where (r2)≥∆2−∆−∆2−∆1∆2+1.Solving, we �nd r ≥ 1+√9+8(∆2−∆−∆2−∆1∆2)2 . Lastly, adding ebak requires at most one more olor.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian ProdutsNote that CKK proved the upper bound
τ2 (G )≤ 2∆+

⌈1+√9+8∆(∆−1)2 ⌉

≤
⌈2+√2⌉∆. The improvementon this bound is greatest when ∆1∆2 is largest (for �xed ∆),namely when ∆1 =∆2 = 12∆. Then

∆2−∆−∆2−∆1∆2 = 34∆2− 32∆= 34 (∆−1)2− 34 , so












1+√9+8( 34 (∆−1)2− 34)2 
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=
⌈√1.5∆⌉and τ2 (G1×G2)≤ 2∆−1+ ⌈√1.5∆⌉

=
⌈(2+√1.5)∆⌉
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Cartesian ProdutsTheoremLet m ≤ n. Then
τ2 (Km×Kn) ={ 6 m = n = 22n else .Proof.Let G = Km×Kn, m ≤ n. Now Kn ⊆ G , so τ2 (G )≥ 2n. Nowertainly τ2 (K2×K2) = 6, and τ2 (K1×K2) = 4. Furthermore, wesee G ⊆ Kn×Kn, so the proof redues to this ase.Now it is well-known that there exist at least two mutuallyorthogonal Latin squares for all n exept 2 and 6. We onstrut a2-tone oloring of Kn×Kn by using numbers 1 to n for the �rstLatin square and n+1 to 2n for the seond Latin square. Nowjuxtapose them into a Graeo-Latin square. This an be viewed asa 2-tone oloring of Kn×Kn, where eah ell is a vertex and eahpair of verties in the same row or olumn are adjaent.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian ProdutsProof.This leaves us to �nd a 2-tone oloring of K6×K6 with 12 olors.The oloring below, representing the graph as a table, ompletesthe proof.AB 37 28 59 46 1090 68 35 7A 1B 2478 2B 40 13 5A 6956 0A 17 48 29 3B34 15 9B 26 70 8A12 49 6A 0B 38 57Note that a 2-tone oloring exists in this last ase even though aGraeo-Latin square does not beause we have 66 labels to hoosefrom, rather than 36. Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts
We an use this result to onstrut bounds on the 2-tone hromatinumber of a artesian produt of graphs.CorollaryLet G and H be nontrivial graphs, not both K2, with orders r and s,respetively. Thenmax{τ2 (G ) ,τ2 (H) ,6} ≤ τ2 (G ×H)≤max{2r ,2s} .
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Cartesian ProdutsWe an also onsider produts of paths.PropositionFor the grid Pm×Pn, m, n ≥ 2, we have τ2 (Pm×Pn) = 6.Proof.Sine the grid ontains a 4-yle, its 2-tone hromati number is atleast six. Represent the grid as a lattie in the �rst quadrant. Tilethe grid with the following blok.36 15 2425 34 1614 26 35This de�nes a 2-tone oloring.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesCorollaryLet i, j be positive integers. We have τ2 (C3i ×C3j) = 6.Proof.Take the oordinates in the previous onstrution mod 3i and 3j ,respetively. This de�nes a 2-tone oloring for the produt of yles.These problems suggest the problem of determining τ2 (Ci ×Cj) forall i and j. We have the following partial results.TheoremWe have
τ2 (C3×Ci) ={ 6 i = 3,6,8,9,11,12, i ≥ 147 i = 4,5,7with i = 10,13 undeided between 6 and 7.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesProof.We have already seen the result for i and multiple of 3. Thefollowing blok works for i = 8, and bloks of length 3 and 8 an bemade to agree on two onseutive olumns, so they an beonatenated to obtain the other values.14 56 24 15 36 14 56 2325 34 16 23 45 26 13 4636 12 35 46 12 35 24 15For i = 4,5,7, the appropriate labelings are easily determined, andthe �rst is inluded in the following theorem. Suppose thatG = C3×C4 has a 2-tone 6-oloring. Then eah olor is used fourtimes, sine 24 non-distint olors are needed and every olorappears in eah olumn. Then eah olor appears twie in somerow, neessarily distane two apart. Thus there is a pair of olumnsdistane two apart with three suh pairs of olors in the samerows. Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesProof.Clearly no two an be in the same row. This trio of olors must berotated in the olumn in between. The trio of the other three olorsmust be rotated to all three positions over these three olumns.But this leads to a ontradition.For G = C3×C5, eah olor is used �ve times, and so ours twiein two rows distane two apart. Thus there are twelve suh pairs,so of the �ve pairs of olumns distane two apart, one must have atleast three suh pairs of olors in the same rows. A ontraditionfollows as before.For G = C3×C7, it is possible to show by an exhaustive searh thatthere is no 6-oloring.CorollaryFor j = 3,6,8,9,11,12, and j ≥ 14, τ2 (C3i ×Cj) = 6.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesLemmaIf a produt of yles has a 2-tone 6-oloring, then no vertex hasboth its two neighbors in its row sharing a ommon olor and itstwo neighbors in its olumn sharing a ommon olor.Proof.Let v be a vertex in a produt of yles G. Suppose to the ontrary thatG has a 2-tone 6-oloring and v has both its two neighbors in its rowsharing a ommon olor and its two neighbors in its olumn sharing aommon olor.Let u and w be neighbors of v that are not in the same row or olumn,and let their mutual neighbor other than v be x. If u and w have noolors in ommon, then x is fored to have the same olors as v, whih isimpossible. Thus every pair of neighbors of v has a olor in ommon, andlearly no two neighbors of v have the same label.Form a graph H whose verties are the four olors not used on v, andedges represent the pairs of olors used to label them. Then H has sizefour, and every pair of edges is adjaent. But this is impossible.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesTheoremLet i ≥ 3. Then τ2 (C4×Ci) = 7.Proof.Consider a given row of G = C4×Ci . It is possible for a row to be2-tone olored with six olors so that every vertex has the propertythat eah two neighbors share no ommon olors ⇐⇒ its length isa multiple of three.First suppose i 6= 0 mod 3 and the graph G has a 2-tone 6-oloring.Now every 4-yle 2-tone olored with six olors has every pair ofnonadjaent verties having one ommon olor. Thus G has somevertex v so that its pairs of neighbors in both its row and olumnhave one olor in ommon. But by the previous lemma, this isimpossible. Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesProof.Now suppose i = 0 mod 3, and G has a 2-tone 6-oloring. By the lemma,eah row must have the property that eah two neighbors share noommon olors. Then eah six olors appear in every three onseutiveverties of a row, and two nononseutive rows must have a olorrepeated in eah of the olumns. Then a ontradition follows as in thease of the graph G = C3×C4. Thus τ2 (C4×Ci )≥ 7.We now show that equality an be ahieved. The following tablesorrespond to olorings of C4×C3. and C4×C4. Eah entry represents avertex and verties are adjaent if they are adjaent in a row or olumn,or on opposite ends of a row or olumn.15 46 2337 25 1412 36 5734 27 16 15 46 12 4737 25 34 2612 36 17 4534 27 35 16 15 46 12 47 3637 25 34 26 1412 36 17 45 3734 27 35 16 25These two olorings an be onatenated to form produts of C4 andlarger yles sine they agree on the �rst two olumns. This leaves onlyG = C4×C5, whih is shown above.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesLemmaLet n ≥ 5, n 6= 0 mod 3. Then any 2-tone 6-oloring of Cn uses at leastfour 2-hords.Proof.Case 1. Let n = 3r +1. Then Cn needs 6r +2 olors with repetition. Aolor lass using no 2-hords an use at most r verties. A olor lasswith r +1 verties uses at least two 2-hords. Four lasses of r vertiesand two of r +1 produe 6r +2 olors. Using a olor lass of r + k olorswould require at least 3k−1 2-hords, so there is no advantage to usinga lass of more than r +1 verties.Case 2. Let n = 3r +2. Then Cn needs 6r +4 olors with repetition. Aolor lass using no 2-hords an use at most r verties. A olor lasswith r +1 verties uses at least one 2-hord. Two lasses of r vertiesand four of r +1 produe 6r +4 olors. Using a olor lass of r +k olorswould require at least 3k−2 2-hords, so there is no advantage to usinga lass of more than r +1 verties.In both ases, at least four 2-hords are required.The proof says 'at least' beause we have not shown that the olorslasses neessarily '�t together' to form a 2-tone oloring.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesPropositionLet (i , j) = (5,n), 5≤ n ≤ 19, n 6= 0 mod 3, or (7,7) or (7,8). Then
τ2 (Ci ×Cj)≥ 7.Proof.Eah 2-hord orresponds to the vertex between its ends. In eahase, we show that if the graph has a 2-tone 6-oloring, more2-hords are required than there are verties in the produt ofyles. Then by the pigeonhole priniple, some vertex must use2-hords in both its row and olumn. But by the earlier lemma, thisis impossible, so the 2-tone hromati number is at least 7.For (i , j) = (5,n), 5≤ n ≤ 19, n 6= 0 mod 3, we have order 5n andat least 4n+4 ·5> 5n 2-hords. For (i , j) = (7,7), we have order49 and at least 4 ·7+4 ·7= 56 2-hords. For (i , j) = (7,8), we haveorder 56 and at least 4 ·7+4 ·8= 60 2-hords.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of CylesWe an also onsider 2-tone oloring for the hyperubes. Thisappears di�ult in general, but we do have the following result.CorollaryWe have the following values for the 2-tone hromati number forhyperubes.n τ2 (Qn)1 42 63 64 7Proof.We have Q1 = K2, Q2 = C4, Q3 = C4×K2, and Q4 = C4×C4, sothese values have already been determined.Allan Bikle 2-Tone Coloring and Petersen Covers



Cartesian Produts of Cyles
The 3-ube an be olored with six olors by making its olorlasses its two partite sets and four pairs of verties distane threeapart. It is not hard to verify that this oloring is unique up toisomorphism of olors and graphs. The 4-ube ontains the 3-ube,but attempting to extend this 6-oloring quikly leads to aontradition.The 7-oloring used for the 4-ube does not extend to the 5-ube,but that does not prove that it annot be 7-olored. It was shownin the original report by Josh Goss that the 5- and 6-ubes an be8-olored.
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Thank You!
Thank you!
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