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History of t-Tone Coloring

Math 645 (Summer 2009) taught by Ping Zhang - Class
project of Nicole Fonger, Josh Goss, Ben Phillips, and Chris
Segroves (FGPS) - assisted by Gary Chartrand

Bickle and Phillips work on the topic Summer 2009-2011 -
submit paper �t-Tone Colorings of Graphs� (2011)

Bickle presents at conferences - 41st Southeastern (2010) and
MIGHTY LI (2011) - attended by Doug West

Cranston, Kim, and Kinnersly (CKK), current and former
students of West, submit the paper �New Results in t-Tone
Coloring of Graphs� following up on our work (2011)

Thanks to Drs. Gary Chartrand, Allen Schwenk, Doug West,
and Ping Zhang for their advice
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De�nitions

De�nition

A 2-tone coloring of a graph assigns two colors to each vertex of a
graph so that adjacent vertices have no common colors and vertices
at distance two have at most one common color.
The label of a vertex is the pair of colors on a vertex.
A graph is 2-tone k-colorable if it can be 2-tone colored with k
colors.
The 2-tone chromatic number τ2 (G ) of a graph is the minimum
number of colors in any 2-tone coloring.
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Basic Bounds

Clearly τ2 (Kn) = 2n.
Thus 2ω (G )≤ τ2 (G )≤ 2n.
Also, τ2 (G )≥ 2n

α(G) .

Theorem

[FGPS] We have τ2 (G )≤ χ (G ) + χ
(
G 2
)
.

Proof.

Combining a proper vertex coloring of G and a proper coloring of
G 2 yields a 2-tone coloring of G.
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Complete Multipartite Graphs

Theorem

[FGPS] For the complete multipartite graph Ka1,a2,...,ar
,

τ2 (Ka1,...,ar
) =

r

∑
i=1

⌈
1+
√
1+8ai
2

⌉
.

Proof.

Each partite set cannot use any color in common with any other. In
a partite set, we need need r colors, where

(
r
2

)
≥ ai . Solving for r

gives the formula.
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Stars

Corollary

[FGPS] For the nontrivial star K1,s ,

τ2 (K1,s) =

⌈
5+
√
1+8s

2

⌉
.

Proof.

τ2 (K1,s) = 2+

⌈
1+
√
1+8s

2

⌉
=

⌈
5+
√
1+8s

2

⌉
.

Corollary

Let G have maximum degree 4. Then

τ2 (G )≥
⌈
5+
√
1+84
2

⌉
.
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Bridges

Theorem

Let G be a graph with a bridge e = uv. Let F1 and F2 be the
components of G − e containing u and v, respectively, and let
H1 = G [F1∪ v ], and H2 = G [F2∪u]. Then
τ2 (G ) = max{τ2 (H1) ,τ2 (H2)}.

Proof.

The two subgraphs can be colored to agree on the bridge without
con�ict.
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Trees

Theorem

[FGPS] Let T be a nontrivial tree with maximum degree 4. Then

τ2 (T ) =

⌈
5+
√
1+84
2

⌉
.

Proof.

[Allan] By the theorem on bridges, the 2-tone chromatic number of
a tree is the maximum of the 2-tone chromatic numbers of all the
stars it contains.
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The Petersen Graph

Consider forming a graph whose vertices are the ten possible labels
for a 2-tone 5-coloring and all possible edges are added. This graph
is the Petersen graph. In fact, the Petersen graph can be de�ned
with just this labeling. Thus its 2-tone chromatic number is �ve, so
any subgraph of the Petersen graph is 2-tone 5-colorable.
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The Petersen Graph

Theorem

If a graph G has diameter at most four, then G is 2-tone 5-colorable
⇐⇒ G is a subgraph of the Petersen graph.

Proof.

We have seen that every subgraph of the Petersen graph is 2-tone
5-colorable.
If G is 2-tone 5-colorable, it is easily seen that two vertices with the
same label must be distance at least �ve apart, since otherwise
C4 = K2,2 could be colored with �ve colors. Thus if G has diameter
at most four, then no label can be repeated, so it is a subgraph of
the Petersen graph.
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Cycles

De�nition

A 2-chord of a cycle to be a pair of vertices of the cycle whose
distance is two.

Theorem

The Petersen Graph has no 7-cycle.

Proof.

Suppose it has a 7-cycle. Then C7 has seven 2-chords, and each
must have at most one common color. Now 14 colors are used with
repetition, and each color can be used at most three times. Then
four colors are used three times, and one is used twice. But this
implies that C7 has at least eight 2-chords.
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Cycles

Theorem

[FGPS] For the cycle Cn,

τ2 (Cn) =

{
6 n = 3,4,7
5 else

.

Proof.

[Allan] Certainly τ2 (Cn)≥ 5. Now the cycles of length 3, 4, and 7
are not subgraphs of the Petersen graph. Now C3 = K3, and C4 can
have nonadjacent vertices share a color, so τ2 (C3) = τ2 (C4) = 6.
Now C7 can be labeled as below. The cycles of length 5, 6, 8, and
9 are subgraphs of the Petersen graph, with labellings below
represented as broken cycles.
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Cycles

Proof.

−12−34−51−23−45−

−12−34−15−32−14−35−

−12−34−56−13−24−35−46−

−12−34−15−23−14−25−13−45−

−12−34−15−32−14−25−13−24−35−

Finally, for n ≥ 10, the cycle can be constructed by breaking and
attaching together cycles of length 5, 6, 8, and 9, which can be
done because the labellings above agree on the �rst three
vertices.
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Regular Graphs

Theorem

If G is r -regular, r ≥ 2, then τ2 (G )≤ r2 + r .

Proof.

Let G be r -regular, r ≥ 2. Note that each vertex of G has at most
r + r (r −1) = r2 other vertices within distance two, so
4
(
G 2
)
≤ r2. Hence

τ2 (G )≤ χ (G )+χ
(
G

2
)
≤ (1+4(G ))+

(
1+4

(
G

2
))
≤ (1+ r)+

(
1+ r

2
)
.

By Brooks' Theorem, the middle inequality can be an equality only
when G or G 2 are complete or an odd cycle. Now for r ≥ 2,
τ2 (Kr ) = 2r ≤ r2 + r and τ2 (Cn)≤ 6≤ r2 + r . Now G 2 cannot be a
noncomplete odd cycle. The only case in which we might have
χ
(
G 2
)

=
(
1+ r2

)
is when G 2 is complete with order 1+ r2.
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Regular Graphs

Proof.

But this means that G must have diameter 2 and girth 5, so G is a
Moore graph. But Ho�man and Singleton [1960] showed that the
only Moore graphs with girth 5 occur when r = 2, 3, 7, and possibly
57 (this case is undecided). The case r = 3 is the Petersen graph
(PG ), which has τ2 (PG ) = 5 < 12. The case r = 7 is the
Ho�man-Singleton graph (HS), for which χ (HS) = 4, so
τ2 (HS)≤ 4+49 < 56. Finally, Borodin and Kostochka [1977]
showed that for a K4-free graph, χ (G )≤

⌈
3
4

(4(G ) +1)
⌉
, so if a

graph M satis�es the �nal case r = 57, then χ (M)≤ 44, so
τ2 (M)≤ 44+572 < 57+572.

This implies that for any graph G , τ2 (G )≤∆2 + ∆.

Conjecture

Let G have maximum degree 4. Then τ2 (G )≤ 24+2, with
equality only if G contains K4+1 or for 4= 2, C4 or C7.
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Critical Graphs

De�nition

A graph G is 2-tone k-critical if τ2 (G ) = k and for any proper
subgraph H of G , τ2 (H) < k .

Theorem

Let G be a graph containing P3 with edge e = uv. Then
τ2 (G )− τ2 (G − e)≤ 1.

The proof breaks into three cases depending on whether the labels
of u and v have 0, 1, or 2 colors in common. The case when the
labels are the same is the most di�cult.
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Theta Graphs

We can characterize the 6-critical graphs in one particular family of
graphs. The theta graph θi ,j ,k is formed by taking paths of lengths
i , j , k and identifying them at their end-vertices. It necessarily
contains three cycles of lengths a = i + j , b = i +k , c = j +k . We
will use (i , j ,k) for θi ,j ,k .

Theorem

The theta graph θ1,2,2 has τ2 (θ1,2,2) = 7, and (3,3,3), (3,3,5),
(3,3,6), (4,4,4), (4,4,5), and (3,3,9), all have 2-tone chromatic
number 6. For all other theta graphs,
τ2

(
θi ,j ,k

)
= max{τ2 (Ca) ,τ2 (Cb) ,τ2 (Cc)}, where a = i + j ,

b = i +k, c = j +k.
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Petersen Covers

De�nition

A Petersen cover is a covering graph of the Petersen graph. That
is, it is a graph for which there is an onto homomorphism f from G
to the Petersen graph with the property that for each vertex v of G
the neighborhood of v maps bijectively onto the neighborhood of
f (v).
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Petersen Covers

Theorem

A cubic graph G has τ2 (G ) = 5 if and only if G is a Petersen cover.

Proof.

Let G be a cubic graph G with τ2 (G ) = 5. Then given a 2-tone
5-coloring of G , map all the vertices with the same label to the
vertex of the Petersen graph with that label. Now no edge of G is
mapped to a nonedge of the Petersen graph, since then it would
violate the labeling. No adjacent edges are mapped to the same
edge, since then there would be two vertices at distance two with
the same label. Thus G is a Petersen cover.
Let G be a Petersen cover. Label all the vertices that map to a
given vertex of the Petersen graph under the homomorphism with
the same label. This produces a 2-tone coloring of G .
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Petersen Covers

Corollary

A Petersen cover has order n = 10k, k a positive integer.

Proof.

Let G be a Petersen cover. Suppose k vertices receive label X in a
2-tone 5-coloring, and one of them is v . Then every other label
appears exactly once amongst the vertices within distance two of v ,
as in the Petersen graph. Further, none of these vertices is within
distance two of any other vertex with label X , since such vertices
must be distance at least �ve apart. By considering another label,
we see that the number of vertices receiving each label is the same.
Thus the order of G is a multiple of ten.

Corollary

If G is cubic, with order n 6= 10k, it is not 2-tone 5-colorable.
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Petersen Covers

De�nition

Let G be a graph containing vertices u, v , w , x , edges uv , wx , and
not containing edges uw , vx . A 2-switch is the operation that
deletes edges uv and wx and adds edges uw and vx .

Theorem

G is a Petersen cover if and only if it can be obtained by starting
with k disjoint copies of the Petersen graph and performing some
number of 2-switches on pairs of edges that join vertices with the
same labels.
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Petersen Covers

Proof.

Consider a graph produced by this process. The edges switched by
a 2-switch must still map to the same edge of the Petersen graph,
so the graph is a Petersen cover.
Let G be a Petersen cover. Consider aligning the vertices that map
to the same vertex of the Petersen graph in a column of k levels,
with one vertex of each type per level. By performing 2-switches, it
is possible to produce edges that all join vertices of the same level,
separating out k copies of the Petersen graph. Reversing the
sequence of 2-switches, we see that G can be constructed in this
way.
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Petersen Covers

Theorem

Let G be a Petersen cover. Then
1. G does not contain a bridge.
2. If G contains a minimal 2-edge-cut, then performing a 2-switch
on those edges separates G into two components which are two
smaller Petersen covers.
3. If G has a minimal 3-edge-cut, it is trivial.

Proof.

(1 only) Performing a 2-switch on a pair of edges, of which at least
one is a bridge produces another pair of edges, at least one of
which is a bridge. Thus no bridge can be produced by the process
described in the previous theorem.
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Cubic Graphs

In 2010, I made the following conjecture for cubic graphs.

Conjecture

Let G be a cubic graph. Then
1. τ2 (G )≤ 8;
2. τ2 (G )≤ 7 when G does not contain K4;
3. τ2 (G )≤ 6 when G does not contain K4− e.

I had veri�ed this conjecture for Cn×K2, mobius ladders, cubic
graphs of order at most 8, and various others.
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Upper Bounds

CKK improved on our general upper bound. Their key idea is to
color greedily using the available labels, rather than combining two
separate colorings.
If you color a graph with maximum degree ∆, then the neighbors of
a vertex exclude 2∆ colors. There are at most ∆(∆−1)

�second-neighbors� of a vertex. Since
(√

2∆
2

)
> ∆(∆−1), we have

τ2 (G )≤
⌈
2+
√
2
⌉

∆.

Theorem

[CKK 2011] We have τ2 (G )≤
⌈
2+
√
2
⌉

∆.

This is not quite the best possible, as CKK chose a simpler formula
over exactness. It is also possible to shave one o� this bound. We
�rst consider a bound based on maximum degree and degeneracy.
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Upper Bounds

Theorem

[Allan 2011] Let G be k-degenerate with maximum degree

∆ = ∆(G ). Then τ2 (G )≤ 2k +

⌈
1+
√

9+8(2∆k−∆−k2)

2

⌉
.

Proof.

Color G with a construction sequence. Each vertex has at most k
neighbors which exclude at most 2k colors. When colored, a vertex
v has j ≤ k neighbors already colored and each of these has at
most ∆−1 second-neighbors. Then v has at most ∆− j uncolored
neighbors, each of which has at most k−1 colored
second-neighbors. Thus there are at most
k (∆−1) + (∆−k)(k−1) = 2∆k−∆−k2 second-neighbors
already colored, so we need r extra colors, where(
r
2

)
≥ 2∆k−∆−k2 +1. Solving, we �nd

r ≥ 1+
√

9+8(2∆k−∆−k2)

2
.
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Upper Bounds

Theorem

Let a nonempty graph G have maximum degree ∆ = ∆(G ). Then

τ2 (G )≤ 2∆−1+

⌈
1+
√

1+8∆(∆−1)

2

⌉
.

Proof.

We may assume G is connected and regular. Now G − e is
∆−1-degenerate. Coloring it using a construction sequence, each
vertex has at most ∆−1 neighbors which exclude at most
2(∆−1) colors. There are at most ∆(∆−1)−1 second-neighbors
already colored, so we need r extra colors, where

(
r
2

)
≥∆(∆−1).

Solving, we �nd r ≥ 1+
√

1+8∆(∆−1)

2
. Lastly, adding e back requires

at most one more color by the theorem on critical graphs.

Note that the bound in the theorem is at least one better than that
of CKK.
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Upper Bounds

Theorem

[CKK 2011] Let a nonempty bipartite graph G have maximum
degree ∆ = ∆(G ). Then τ2 (G )≤ 2

⌈√
2∆
⌉
.

Proof.

Use disjoint sets of colors for the partite sets. Coloring a partite set
using a construction sequence, each vertex has no neighbors in the
same partite set and has at most ∆(∆−1) second-neighbors, so
we need r colors, where

(
r
2

)
> ∆(∆−1). The bound follows.

Using similar techniques, I proved a bound which can be one less,
(e.g. ∆ ∈ {3,5,10,15,17,22,27,29}), but usually is one more.

Theorem

[Allan 2011] Let a nonempty bipartite graph G have maximum

degree ∆ = ∆(G ). Then τ2 (G )≤ 2

⌈
1+
√

1+8∆(∆−1)

2

⌉
+1.
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Upper Bounds

CKK proved analogous bounds for chordal graphs.

Theorem

[CKK 2011] a. If G is a chordal graph, then

τ2 (G )≤
⌈(

1+
√
6
2

)
∆
⌉

+1.

b. For every ε > 0, there exists an r0 such that whenever r > r0, if
G is a chordal graph with maximum degree r , then
τ2 (G )≤ (2+ ε) r .
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Cubic Graphs

Thus for cubic graphs, we have

τ2 (G )≤ 12 (our original bound)

τ2 (G )≤ 11 (CKK's general ∆ bound)

τ2 (G )≤ 9 (my improvement of CKK's bound)

τ2 (G )≤ 8 (CKK's main theorem)

Theorem

[CKK 2011] If ∆(G )≤ 3, then τ2 (G )≤ 8.

The proof is about three pages long. I will provide a brief sketch.
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Cubic Graphs

Proof sketch:

A 2-degenerate graph with ∆ = 3 is 2-tone 8-colorable.

Let G be a counterexample of minimum order.

G must be cubic, since else it is 2-degenerate and can be
colored as above.

G cannot have an induced K2,3, since if it did, the coloring can
be extended to it.

Color all of G except for a cycle C of minimum length.

Either G contains K4− e, or none of the vertices of C have a
common neighbor.

There are three cases, depending upon the speci�c partial
coloring.

We can color the vertices along the cycle, maintaining
'�exibility', and complete the coloring.
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Cubic Graphs

How about other cubic graphs? Recall part 3 of my conjecture:

Conjecture

Let G be a cubic graph. Then τ2 (G )≤ 6 when G does not contain
K4− e.

CKK refuted this by demonstrating that it fails for the Heawood
graph, which does not contain K4− e (and indeed has girth 6).
Their proof uses a clever but somewhat involved contradiction. I
developed my own shorter proof which analyzes the maximal
independent sets of the Heawood graph.

Allan Bickle 2-Tone Coloring and Petersen Covers



Cubic Graphs

Theorem

[CKK 2011] The Heawood Graph is not 2-tone 6-colorable.

Proof.

[Allan 2011] Recall that the Heawood Graph G is the incidence
graph for the Fano Plane, or equivalently, the Steiner Triple System
of order 7 (STS(7)). Hence it is bipartite and any two vertices in
the same partite set have exactly one common neighbor.
Consider the maximal independent sets of G . Each partite set is a
maximum independent set of size seven. A vertex in one partite set
is adjacent to three in the other, so there can be four vertices from
the other partite set in the maximal independent set. Call an
independent set with four vertices in one partite set and one in the
other a 1-4-set. Two vertices in one partite set have a total of �ve
distinct neighbors in the other set. Hence there can be an
independent set with two vertices in each partite set.
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Cubic Graphs

Proof.

Suppose that G is 2-tone 6-colorable. If there is a color class of size
seven, then it is one of the partite sets, and each vertex requires a
distinct color for its other color. If there is a color class of size six
contained in one of the partite sets, then there are at most two
color classes with two vertices in this partite set, and at least four
more colors are needed.
Hence each color class has size at most �ve. But then the six color
classes must have sizes 5,5,5,5,4,4. Restricted to one partite set,
they have sizes 5, 4, 2, or 1. Hence there are at least two with size
at least four. Now any two color classes can overlap on at most one
vertex of a partite set, so there are two with size four, which must
1-4-sets.
Now WLOG any 1-4-set contains four vertices that do not contain
a triangle of the STS(7). But no other 1-4-set can contain only one
vertex of this set, since then it would contain a triangle. This is a
contradiction.
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Cubic Graphs
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Cubic Graphs

After learning of the falsi�cation of part 3, I checked all 21 cubic
graphs of order 10 and found that one of them also violates part 3.

Theorem

[Allan 2011] Let G be the graph formed by starting with two copies
of K2,3 and adding a matching between the vertices of degree two
in the two K2,3's. Then G is 2-tone 7-critical.
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Cubic Graphs

Proof.

Suppose G has a 2-tone 6-coloring. Now K2,3 is uniquely
6-colorable, and each partite set requires three distinct colors. Let
A and B be the partite sets of one K2,3 and C and D be the partite
sets of the other K2,3, with A and C being those that have three
vertices, and hence are joined by the matching.
If there is a color in common between A and C, then it must appear
on two vertices in each set, and hence on adjacent vertices. If they
have no common colors, then B and C use the same three colors.
But then they have two common labels at distance two apart.
G has only two edge orbits. Considering G − e for one edge of each
type, 2-tone 6-colorings are easily obtained. Hence G is
7-critical.

These two graphs are the only known counterexamples. It is
interesting that they are both bipartite.
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t-Tone Coloring

De�nition

A t-tone coloring of a graph assigns t colors to each vertex of a
graph so that vertices at distance d have fewer than d common
colors.
The t-tone chromatic number τt (G ) of a graph is the minimum
number of colors in any t-tone coloring.

CKK proved the following four theorems for t-tone coloring.

Theorem

We have τt (G )≤
(
t2 + t

)
∆(G ).
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t-Tone Coloring

Theorem

For all t > 0, there exists c = c (t) such that for every tree T we
have τt (T )≤ c

√
∆(T ).

Theorem

If G is a k-degenerate graph, k ≥ 2, and ∆(G )≤ r , then for every

t we have τt (G )≤ kt +kt2r1−
1
t .

Theorem

For each r ≥ 3, there exists a constant c such that for all t, there is
a graph G for which ∆(G ) = r and τt (G )≥ ct2

lg t
.
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t-Tone Coloring

Theorem

For all t > 0, there exists c = c (t) such that for every tree T we
have τt (T )≤ c

√
∆(T ).

Theorem

If G is a k-degenerate graph, k ≥ 2, and ∆(G )≤ r , then for every

t we have τt (G )≤ kt +kt2r1−
1
t .

Theorem

For each r ≥ 3, there exists a constant c such that for all t, there is
a graph G for which ∆(G ) = r and τt (G )≥ ct2

lg t
.
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t-Tone Coloring

Theorem

For all t > 0, there exists c = c (t) such that for every tree T we
have τt (T )≤ c

√
∆(T ).

Theorem

If G is a k-degenerate graph, k ≥ 2, and ∆(G )≤ r , then for every

t we have τt (G )≤ kt +kt2r1−
1
t .

Theorem

For each r ≥ 3, there exists a constant c such that for all t, there is
a graph G for which ∆(G ) = r and τt (G )≥ ct2

lg t
.
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Thank You!

Thank you!
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