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A Scheduling Problem

Example. Six math students will take seven summer math classes,
denoted A-G. The students' schedules are listed below.

Student Classes

Al A, D, G

Bob B, E

Carl A, C, G

Dave C, E

Edna E, F

Frank B, D, F

We model this situation with a graph.
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De�ning a Graph

De�nition

A graph G is a mathematical object consisting of a �nite nonempty
set of objects called vertices V (G ), and a set of edges E (G ).
An edge is two-element subset of the vertex set.
The order n (G ) = |V (G )| of a graph G is the number of vertices
of G .
The size m (G ) = |E (G )| of a graph G is the number of edges of
G .

n = 4
m = 5
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Solving the Example

Student Classes

Al A, D, G

Bob B, E

Carl A, C, G

Dave C, E

Edna E, F

Frank B, D, F

B

E

F

D

C

G
A

Each vertex represents a class. Put an edge between two
classes when they have a common student.

Thus Al's schedule imposes edges AD, AG, and DG.

Thus we construct the graph above, the Moser spindle.

A natural question to ask here is how few time slots we can
schedule the classes in, and how to construct such a schedule.
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Solving the Example

B

E

F

D

C

G
A 1

4

3

2

2

3
1

If a vertex is in one slot, its neighbors must be in di�erent
slots. Number the slots 1, 2, 3, ...
A, D, and G must be in three di�erent slots, say 1, 2, and 3.
If we try to schedule the rest of the classes in three slots, C
must be in slot 2.
Vertices B and F must use slots 1 and 3.
However, we �nd it is not possible to schedule vertex E in slots
1, 2, or 3, so a fourth slot is needed.
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Other Applications

Many other situations can be modeled similarly

Situation Vertices Minimize

con�icting meetings meetings number of time slots

tra�c intersection tra�c lanes cycles of tra�c light

con�ict in �sh tanks �sh number of tanks

con�ict of TV broadcasts TV stations number of channels

shipping chemicals chemicals number of packages

In the previous example, we refer to the slots as colors, and
consider coloring the vertices.
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De�ning Graph Coloring

De�nition

A vertex coloring of a graph assigns one color to each vertex.
A proper vertex coloring requires that adjacent vertices are
colored di�erently.

While the colors could be actual colors (red, green, blue, ...), it
is common to use natural numbers 1, 2, ... , k .

De�nition

A k-coloring of a graph is a proper vertex coloring using colors 1,
... , k (not necessarily all of them).
A graph is k-colorable if it has a k-coloring.
The chromatic number χ (G ) is the minimum number of colors
used in any k-coloring of a graph G .
A minimum coloring of a graph is one using χ (G ) colors.
A color class is all vertices with the same color in some coloring of
the graph.
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Basic Bounds on Chromatic Number

To determine the chromatic number of a graph, it is useful to
have bounds that are easier to calculate. It is immediate that

1≤ χ (G )≤ n (G )

An extremal graph is one that makes a bound an equality.
The extremal graph for the lower bound is the empty graph

Kn (which has no edges), since only a graph with no edges
can be colored with one color.
The extremal graph for the upper bound is the complete

graph Kn (which has all possible edges), since only this
requires a di�erent color on each vertex.
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Subgraphs

To determine chromatic numbers exactly, we need better
bounds.

De�nition

A graph H is a subgraph of a graph G if V (H)⊆ V (G ) and
E (H)⊆ E (G ) so that the edges in E (H) use only vertices in
V (H).
We write H ⊆ G and say G contains H.
A clique is a complete subgraph, or the set of vertices inducing a
complete subgraph.
An independent set of vertices is a set that induces no edges.

Proposition

If H ⊆ G , then χ (H)≤ χ (G ).

Proof.

A coloring of G with χ (G ) colors can be restricted to H.
Allan Bickle Bounds and Algorithms for Graph Coloring



Clique Number and Independence Number

De�nition

The clique number ω (G ) of a graph G is the size of the largest
clique of G .

Corollary

For any graph G , χ (G )≥ ω (G ).

De�nition

The independence number α (G ) of a graph G is the size of the
largest independent set of G .

ω = 3
α = 4

The independence number and clique number are
complementary parameters.
Any color class in a proper vertex coloring is an independent
set.
A k-coloring partitions the vertex set into k color classes.
The chromatic number is the smallest number of independent
sets into which V (G ) can be partitioned.
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Lower Bounds

Any color class in a proper vertex coloring is an independent
set.
A k-coloring partitions the vertex set into k color classes.
The chromatic number is the smallest number of independent
sets into which V (G ) can be partitioned.

Proposition

For any graph G , χ (G )≥ n
α(G) .

Proof.

Let k = χ (G ), so G has color classes V1, ... , Vk for some
k-coloring. Then n = ∑

k
i=1 |Vi | ≤ k ·α (G ). Thus χ (G )≥ n

α(G) .

The two basic lower bounds on the chromatic number are
ω (G ) and n

α(G) .

Which is better depends on the graph.
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Examples

Example. Find ω , α , and χ for the following graphs.

B

E

F

D

C

G A 1

4

3

2

2

3 1

The Moser spindle has ω (G ) = 3, and α (G ) = 2.

Corollary 7 implies χ (G )≥ 3, and Proposition 9 implies
χ (G )≥ 7

2 = 3.5.

Since the chromatic number must be an integer, χ (G )≥ 4.

A 4-coloring is shown at right, so χ (G ) = 4.
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Examples

11

11

2

2

2 3

3

3

The Petersen graph has ω (G ) = 2 and α (G ) = 4, with the
four vertices colored 1 below being one maximum independent
set.

The latter implies that χ (G )≥ 10
4 = 2.5.

A 3-coloring is shown at right, so χ (G ) = 3.
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Examples

2 1 3

3 2

1

The graph at right has ω (G ) = 3 and α (G ) = 3, with the
three corners being the unique maximum independent set.

These imply lower bounds of 3 and 6
3 = 2 for the chromatic

number.

A 3-coloring is shown at right.

Note that the maximum independent set cannot be a color
class in any 3-coloring of this graph.
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Paths and Cycles

De�nition

A path Pn is a graph whose vertices can be numbered v1, v2, ...,
vn so that its edges are v1v2, ..., vn−1vn.
A cycle Cn (or n-cycle) is a graph whose vertices can be numbered
v1, v2, ..., vn so that its edges are v1v2, ..., vn−1vn, and vnv1.
An even cycle has n even and an odd cycle has n odd.

Small paths and cycles are illustrated below.
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Coloring Cycles

Theorem

A graph is 2-colorable if and only if it contains no odd cycle.

2-colorable graphs are also known as bipartite graphs.

Example. Even cycles have χ (C2k) = 2. Odd cycles have
χ (C2k+1) = 3.

1

21

2
1

2

12

3

We have good characterizations of graphs with chromatic
number 1 or 2.
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NP-Complete Problems

Unfortunately, there is no good characterization of graphs with
χ (G ) = k when k ≥ 3.

In fact, determining χ (G ) when k ≥ 3 is an NP-complete
problem.

The class of NP-complete problems could all be solved in
polynomial time if any can be solved in polynomial time.

The fact that these problems have been studied extensively
without anyone �nding a polynomial time solution for any of
them suggests (but does not prove) that no such algorithm
exists.

Determining α and ω are also NP-complete problems.

They are essentially equivalent due to complementation.

A naive algorithm would check all 2n vertex subsets of a
graph. A better algorithm (Robson [1986]) runs in O(1.2108n)
time, but no polynomial algorithm is known.
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Greedy Coloring

To show that χ (G ) = k , we must show

1. χ (G )≥ k . Use a lower bound, or �nd a contradiction to show
that χ (G ) < k is impossible.
2. χ (G )≤ k . Find a k-coloring, or use an upper bound.

How can we �nd a k-coloring?

Trial and error may work for small graphs, but larger graphs
may require a more systematic approach.

Algorithm

(Greedy Coloring) Given some vertex order, color each vertex with
the smallest color that has not already been used on an adjacent
vertex.
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Greedy Coloring

Algorithm

(Greedy Coloring) Given some vertex order, color each vertex with
the smallest color that has not already been used on an adjacent
vertex.

Example. Color the vertices of the graph below left in order A-F.
The 3-coloring produced is in the center. However, the coloring at
right uses only two colors.

EF

A

D C

B

23

1

3 2

1

21

2

1 2

1
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Vertex Degrees

Greedy coloring must produce a proper coloring, but as with
many greedy algorithms, it is not guaranteed to produce an
optimal solution.

How good the coloring is depends on the vertex order used.

Some vertex order must produce a minimum coloring, but
checking all n! vertex orders is not practical.

A better vertex order comes from vertex degrees.

De�nition

The degree d (v) of a vertex v is the number of edges incident
with v .
The degree sequence of a graph G is the list of its degrees,
usually written in nonincreasing order.
Its minimum degree is δ (G ). Its maximum degree is ∆(G ).
It is regular if every vertex has the same degree (k-regular if the
common degree is k).
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The Maximum Degree Bound

In any vertex order, each vertex has at most ∆(G ) previously
colored neighbors.

Thus using 1+ ∆(G ) colors, there is always a color available
to color the next vertex.

Theorem

(The Maximum Degree Bound) For any graph G ,
χ (G )≤ 1+ ∆(G ).

This bound is not very good, since a single vertex with large
degree can make it large.

De�nition

A deletion sequence of a graph G is a sequence of its vertices
formed by iterating the operation of deleting a vertex of smallest
degree and adding it to the sequence until no vertices remain.
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Degeneracy

De�nition

A construction sequence of a graph is the reversal of a
corresponding deletion sequence.
A graph is k-degenerate if its vertices can be successively deleted
so that when deleted, each has degree at most k .
The degeneracy D (G ) of a graph G is the smallest k such that it
is k-degenerate.

A construction sequence may produce an e�cient coloring.

Theorem

(The Degeneracy Bound) For any graph G , χ (G )≤ 1+D (G ).

Proof.

Greedily color a construction sequence of G . Each vertex has at
most D (G ) neighbors when colored, so at most 1+D (G ) colors
are needed.
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An Example

Example. A deletion sequence of the graph below left is the
vertices A through I in alphabetical order.

Greedy coloring using the corresponding construction sequence
produces the 3-coloring below right.

This is a minimum coloring, one better than the 4-coloring
guaranteed by the Degeneracy Bound.

Note that beginning the construction sequence with HGI
requires four colors.

A

B

C D

F

E

I

G

H

→

2

2

1 2

1

3

1

3

2
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Comparing Bounds

It is immediate from the de�nition of degeneracy that
δ (G )≤ D (G )≤∆(G ).
An immediate corollary to the Degeneracy Bound is
χ (G )≤ 1+ ∆(G ).
The maximum degree bound is more famous, but is often
much worse.

K1,3 K3,3

For stars K1,r , the Degeneracy Bound gives two, the correct
value, while the maximum degree bound gives r+.
A single vertex of large degree will determine the maximum
degree bound, while only a subgraph with many large degree
vertices determines the Degeneracy Bound.
The Degeneracy Bound fails to give good results for some
graphs, such as Kr ,r .
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The Degeneracy Bound

The Degeneracy Bound fails to give good results for some
graphs, such as Kr ,r .

The Degeneracy Bound has been observed many times in
various forms.

The quantity 1+D (G ) has been called the coloring number

(Erdos/Hajnal [1966]) and the Szekeres-Wilf number [1968].

Unfortunately, the Degeneracy Bound is often presented in the
confusing form χ (G )≤ 1+ max

H⊆G
δ (H).

This seems to imply that all 2n induced subgraphs of G must
be checked.

In fact, only one subgraph (the maximum core) must be
checked, which can be done in O (m) time.
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Components and Blocks

For a disconnected graph G with components Gi , they can be
colored separately.

Thus χ (G ) = max χ (Gi ).

When a noncomplete graph has a cut-vertex, it decomposes
into multiple blocks.

The blocks can be colored separately, and the colorings can be
permuted to agree on the cut-vertices.

Proposition

Let G be a graph with blocks Bi . Then χ (G ) = max χ (Bi ).

1

2

2

1

3 2

1

1

3

2

←→

1

2

2

1

3

2

2

1

3

v v v
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Extremal Graphs

We can characterize the extremal graphs for D (G )≤∆(G ).

Proposition

Let G be a connected graph. Then D (G ) = ∆(G ) if and only if G
is regular.

Proof.

(⇐) If G is regular, then its maximum and minimum degrees are
equal, so the result is obvious.
(⇒) Let D (G ) = ∆(G ) = k . Then G has a subgraph H with
δ (H) = ∆(G )≥∆(H), so H is k-regular. If H were not all of G ,
then since G is connected, some vertex of H would have a neighbor
not in H, implying that ∆(G ) > ∆(H) = δ (H) = ∆(G ). But this
is not the case, so G = H, and G is regular.

Among connected graphs, the Degeneracy Bound equals the
Maximum Degree Bound only for regular graphs.
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Brooks' Theorem

The next theorem shows which regular graphs equal the
Maximum Degree Bound.

Lemma

(Lovasz [1975]) Given r ≥ 3, if G is an r -regular 2-connected
noncomplete graph, then G has a vertex v with two nonadjacent
neighbors x and y such that G −x−y is connected.

Proof.

If G is 3-connected, let v be any vertex, and x and y be two
nonadjacent neighbors of v , which must exist since G is
noncomplete.
If κ (G ) = 2, let {u,v} be any 2-vertex-cut of G . Then
κ (G −v) = 1, so G −v has at least two end-blocks, and v has
neighbors in all of them. Let x , y be two such neighbors. They
must be nonadjacent, and G −x−y is connected since blocks have
no cut-vertices and r ≥ 3.
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Brooks' Theorem

Proof.

If G is 3-connected, let v be any vertex, and x and y be two
nonadjacent neighbors of v , which must exist since G is
noncomplete.
If κ (G ) = 2, let {u,v} be any 2-vertex-cut of G . Then
κ (G −v) = 1, so G −v has at least two end-blocks, and v has
neighbors in all of them. Let x , y be two such neighbors. They
must be nonadjacent, and G −x−y is connected since blocks have
no cut-vertices and r ≥ 3.

x

v

y
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Brooks' Theorem

Theorem

(Brooks' Theorem | Brooks [1941]) If G is connected, then
χ (G ) = 1+ ∆(G ) if and only if G is complete or an odd cycle.

Proof.

(⇐) Equality certainly holds for cliques and odd cycles.
(⇒) Let G satisfy the hypotheses. Then by Proposition 20, G is
r -regular. The result certainly holds for r ≤ 2, so we may assume
r ≥ 3. If G had a cut-vertex, each block could be colored with
fewer than r +1 colors to agree on that vertex, so we may assume
G is 2-connected and to the contrary, not a clique.
By the lemma, we can establish a deletion sequence for G starting
with some vertex v and ending with its nonadjacent neighbors x
and y so that all vertices but v have at most r −1 neighbors when
deleted. Reversing this yields a construction sequence, and coloring
greedily gives x and y the same color, using at most r colors.
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Extremal Graphs

Thus the extremal graphs for χ (G )≤ 1+ ∆(G ) are complete
graphs and odd cycles.

For the Degeneracy Bound, the extremal graphs include these, and
also

chordal graphs (trees, fans, max. outerplanar graphs)

maximal k-degenerate graphs

irregular graphs

many more

No complete characterization of the extremal graphs for this bound
is known.
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Comparing Bounds

There are many upper bounds on the chromatic number.

When evaluating a bound, there are several questions to ask.

What are the extremal graphs (those that make it an equality)?

How e�ciently can it be calculated?

How does it compare to other bounds?

If a bound is at least as good or better for every graph, we say
it is superior.
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The Small Clique Bound

Theorem

(Lovasz [1966]) Given t integers ki such that ∑ki > ∆(G ), there is
a vertex partition inducing subgraphs Gi so that ∆(Gi ) < ki for
each i .

When the clique number is small, split the graph into pieces,
and color each of them using Brooks' Theorem.

This produces the following bound.

Theorem

(Borodin/Kostochka [1977], Catlin [1978], Lawrence [1978]) Let G
be a graph with 3≤ ω (G )≤∆(G ). Then

χ (G )≤
⌈

ω(G)
ω(G)+1 (∆(G ) +1)

⌉
.

The smallest values for which this improves on Brooks'
Theorem are ∆ = 7 and ω ≤ 3.
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The Independence Number Bound

Proposition

For any graph G , χ (G )≤ n+1−α (G ).

Proof.

Color a vertex set with size α (G ) using one color. Color each other
vertex with a unique color.

A graph with χ (G )≤ n+1−α (G ) is contained in
Kn−α + αK1.

K2 +3K1

Since D (Kn−α + αK1) = n−α , D (G )≤ n−α (G ).

Thus the Degeneracy Bound is superior to the Independence
Number Bound.
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The Degree Sequence Bound

Proposition

(Welsh/Powell [1967]) Let G be a graph with degree sequence
d1 ≥ ...≥ dn. Then χ (G )≤ 1+ maxi min{di , i −1}.

Proof.

Order the vertices by their degrees, and color them from largest to
smallest. The i th vertex colored has at most min{di , i −1} earlier
neighbors.

This bound is never superior to the Degeneracy Bound.
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The Eigenvalue Bound

Any graph can be represented as a matrix.

The eigenvalues of a graph are well-de�ned.

Let λ1 be the largest eigenvalue of G .

Theorem

(Wilf [1967]) Let G be a connected graph. Then χ (G )≤ 1+ λ1,
with equality exactly for complete graphs and odd cycles.

The proof of this implicitly uses degeneracy.

Szekeres and Wilf [1968] showed that D (G )≤ λ1 (G ), so the
Degeneracy Bound is better.

I showed [2010] when G is connected, D (G ) = λ1 (G ) exactly
for regular graphs.
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The Longest Path Bound

A tree is a graph that is connected and contains no cycle.

Theorem

If δ (G )≥ k , then G contains all trees of size k .

Let l (G ) be the length of the longest path of G .

The previous theorem implies that D (G )≤ l (G ).

Proposition

For any graph G , χ (G )≤ 1+ l (G ).

Thus the Degeneracy Bound is superior to the Longest Path
Bound.

The extremal graph for the bound D (G )≤ l (G ) is Kn.
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The Odd Cycle Bound

Let lo be the length of the longest odd cycle in a non-bipartite
graph G .

Theorem

(Erdos/Hajnal [1966]) For any graph G containing an odd cycle,
χ (G )≤ 1+ lo .

Their proof used degeneracy implicitly.

I have proved that if G is 2-connected, D (G )≤ lo .

This implies that χ (G )≤ 1+D (G )≤ 1+ lo , so the
Degeneracy Bound is superior to this bound.

Theorem

(Kenkre/Vishwanathan [2007]) For any graph G containing an odd
cycle, D (G ) = lo if and only if G = Klo+1, lo odd.

Allan Bickle Bounds and Algorithms for Graph Coloring



Order-Size Bounds

Theorem

Let G be connected with order n, size m.
(Ershov/Kozhukhin [1962]) Then

χ (G )≤

⌊
3+

√
9+8(m−n)

2

⌋

(Co�man et al [2003]) If δ (G )≥ 2, and G is not a clique or an odd
cycle, then

χ (G )≤

⌊
3+

√
1+8(m−n)

2

⌋
(Me [2010]) If δ (G )≥ 3, and D (G )≤ n−3, then

χ (G )≤ 2+
√
2m−3n+3.

The proofs of these results all use the Degeneracy Bound.
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Bounds Based on Coloring Large Sets

There is another approach to graph coloring that is sometimes
useful.

Algorithm

Find a maximum independent set S of a graph and color it with a
single color. For G −S , repeat this step until all vertices are
colored.

This approach may not be optimal, as some graphs have no
minimum coloring with any color class that is a maximum
independent set.
Finding a maximum independent set is not easy in general, so
replacing 'maximum' with 'maximal' yields a faster algorithm.
This algorithm does not translate directly into a bound, since
most graphs have several maximum independent sets, and
which is chosen may change the number of colors used.
One bound based on this approach follows.
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The Alpha-Omega Bound

Theorem

(Brigham/Dutton [1985]) For any graph G ,

χ (G )≤ ω(G)+n+1−α(G)
2 .

Proof.

We use induction on n. Note the result is true for empty graphs,
which have χ = n, ω = 1, and α = n. Thus it holds for n = 1.
Assume the result holds for graphs with fewer than n vertices, and
let G be a nonempty graph with n > 1. Let S be a maximum
independent set of G and H = G −S .
If H is complete, then
χ (G ) = ω (G ) = ω(G)+ω(G)

2 ≤ ω(G)+n+1−α(G)
2 . If H is not

complete, then α (H)≥ 2, so

χ (G )≤χ (H) +1

≤ ω (H) +n−α (G ) +1−α (H)

2
+1

≤ ω (G ) +n−α (G ) +1−2

2
+1

=
ω (G ) +n−α (G ) +1

2
.
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The Alpha-Omega Bound

Proof.

χ (G )≤χ (H) +1

≤ ω (H) +n−α (G ) +1−α (H)

2
+1

≤ ω (G ) +n−α (G ) +1−2

2
+1

=
ω (G ) +n−α (G ) +1

2
.

This bound is superior to the Degeneracy Bound for some
classes, such as Kr ,s , and is inferior for many others.

As noted before, it will not always be easy to calculate.
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Reed's Conjecture

Theorem

(Schiermeyer [2007]) The extremal graphs for

χ (G )≤ ω(G)+n+1−α(G)
2 are those with α (G ) + ω (G ) = n+1, or

C5 +Kω−2 ⊆ G and C5 +Kn−ω−3 ⊆ G .

Proposition

(Reed [1998]) For any graph G , χ (G )≤ n+ω(G)
2 .

The bound is generally poor (it is always more than n
2 ).

Reed conjectured a better bound.

Reed's Conjecture [1998] is that χ (G )≤
⌈

ω(G)+1+∆(G)
2

⌉
.

If true, this would improve on the Degeneracy Bound for some
graphs.
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Other Applications

Degeneracy has applications to many other problems related to
graph coloring.

chromatic polynomials

Nordhaus-Gaddum theorems

It can be used to prove good bounds on many other variations of
graph coloring.

list coloring

L(2,1) Coloring

vertex arboricity

point partition number

2-tone chromatic number
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Thank You!
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