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Definition

The k-core of a graph G is the maximal induced subgraph H C G
such that 6 (H) > k.

@ The k-core was introduced by Steven B. Seidman in a 1983
paper entitled Network structure and minimum degree.
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Proposition
The k-core is well-defined.

Allan Bickle The k-Cores of a Graph



Basics

Proposition

The k-core is well-defined.

—

Proposition

The cores are nested. That is, if k > j, then C,(G) C C;(G).
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G is its own 0O-core.
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The 1-core of G.
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The 2-core of G.
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The 3-core of G is 2Kj,.
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Definition

The core number of a vertex, C(v), is the largest value for k such

that v € G (G). R
The maximum core number of a graph, C(G), is the maximum of
the core numbers of the vertices of G.

o It is immediate that §(G) < C(G) < A(G).
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Let G be a connected graph. Then G(G) =A(G)<=Gis
regular.

If G is regular, then 6 (G) = A(G), so the result is obvious.

For the converse, let C(G) = A(G) = k. Then G has a subgraph
H with 8 (H) = A(G) > A(H), so H is k-regular. If H were not all
of G, then since G is connected, some vertex of H would have a
neighbor not in H, implying that A(G) > A(H) =6 (H) = A(G).
But this is not the case, so G = H, and G is regular. OJ
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Definition

Iithe maximum core number and minimum degree of G are equal,
C(G)=06(G), we say G is k-monocore.

@ We need a way to determine the k-core of a graph.
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The k-core algorithm (sketch)

Input: graph G with adjacency matrix A, integer k, degree array D.
Recursion: Delete all vertices with degree less than k from G.
(That is, make a list of such vertices, zero out their degrees, and
decrement the degrees of their neighbors.)

Result: The vertices that have not been deleted induce the k-core.
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Theorem
Applying the k-core algorithm to graph G yields the k-core of G,
provided it exists.

Proof.

Let G be a graph and H be the result of the algorithm.

Let v € H. Then v has at least k neighbors in H. Then 6(H) > k.
Then H C G (G).

Let v € Cx(G). Then v is an element of a set of vertices, each of
which has at least k neighbors in the set. None of these vertices
will be deleted in the first iteration. If none have been deleted by
the nth iteration, none will be deleted by the n+ 15t iteration. Thus
none will ever be deleted. Thus v € H. Thus C,(G) C H.

Thus H = Cx(G), so the algorithm yields the k-core. O
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[Batagelj/Zaversnik 2003] The k-core algorithm has efficiency
O(m). (That is, it is linear on the size m.)

@ This depends on using an edge list as the data structure.
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Definition

A vertex deletion sequence of a graph G is a sequence that
contains each of its vertices exactly once and is formed by
successively deleting a vertex of smallest degree.

o We may wish to construct a graph by successively adding
vertices of relatively small degree.

Definition

A vertex construction sequence of a graph is the reversal of a
deletion sequence.
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Definition

A graph is k-degenerate if its vertices can be successively deleted so
that when deleted, each has degree at most k. The degeneracy of a
graph is the smallest k such that it is k-degenerate.

@ Thus the k-core algorithm implies a natural min-max
relationship.

For any graph, its maximum core number is equal to its degeneracy.

Proof.

Let G be a graph with degeneracy d and k = /(:'(G) Since G has a
k-core, it is not k — 1-degenerate, so k < d. Since G has no

k + 1-core, running the k-core algorithm for the value k +1
destroys the graph, so G is k-degenerate, and k =d.

[l
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@ Many important classes of graphs are monocore.

’ Class of Graphs ‘ Maximum Core Number ‘

r-regular r
nontrivial trees 1
forests (no trivial components) 1
complete bipartite K, a< b a

Kay,am a1 <ap <...<a, al+...+ap—1
wheels 3
maximal outerplanar, n >3 2
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@ For more general classes of graphs, we may only be able to
bound the maximum core number.

If G is planar, E(G) <5. If G also has order n < 12, then E(G) <4.

If there were a planar 6-core, it would have 2m =Y d(v;) > 6n,
that is, m > 3n. But every planar graph has m <3n—6.

Let planar graph G have a 5-core H, where H has order n, size m.
Then 2m=Y.d(v;) > 5n, so m > %n. Since H is planar,
m<3n—6. Thus 3n <3n—6, so n(G) > n(H) > 12. O

v
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Definition

For k > 0, the k-shell of a graph G, Sk (G), is the subgraph of G
induced by the edges contained in the k-core and not contained in
the k 4+ 1-core. For k =0, the 0-shell of G is the vertices of the
0-core not contained in the 1-core.
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Definition

For k > 0, the k-shell of a graph G, Sk (G), is the subgraph of G
induced by the edges contained in the k-core and not contained in
the k 4+ 1-core. For k =0, the 0-shell of G is the vertices of the
0-core not contained in the 1-core.

Definition

The k-boundary of G, Bk (G), is the set of vertices contained in
both the k-shell and the k + 1-core.
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Definition

The proper k-shell of G, S; (G), is the subgraph of G induced by
the non-boundary vertices of the k-shell. The order of the k-shell of
G is defined to be the order of the proper k-shell.

@ Thus the vertices of the proper k-shells partition the vertex set
of G. A vertex has core number k if and only if it is contained
in the proper k-shell of G. The proper k-shell is induced by
the vertices with core number k.
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A graph G.
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The 2-shell of G.
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P,

The proper 2-shell of G.
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k-Shells

A graph F with vertex subset B can be a k-shell of a graph with
boundary set B if and only if no component of F has vertices
entirely in B, §(B) > 1, 8¢ (V(F)— B) =k, and F contains no
subgraph H with 8y (V (H)—B) > k+1.

(=) Let F be a k-shell of graph G with boundary set B. If any
component of F had all vertices in B, it would be contained in the
k+1-core of G. F is induced by edges, so 0 (B) > 1. If a vertex v
in F and not in B had d(v) < k, it would not be in the k-core of
G. If F had such a subgraph H, it would be contained in the

k + 1-core of G.

(<) Let F be a graph satisfying these conditions. Overlap each
vertex in B with a distinct vertex of a k+ 1-core G with sufficiently
large order. Then F is the k-shell of the resulting graph.

[
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The 1-shell of G, if it exists, is a forest with no trivial components
and at most one boundary vertex per component.

F is acyclic, 6 (F) =1, and two boundary vertices in a tree are
connected by a path, which would be in the 2-core.
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Theorem

A graph F can be a proper k-shell if and only if F does not contain
a k+ 1-core.

Proof.

The forward direction is obvious.

Let F be a graph that does not contain a k+ 1-core. Let M be a

k + 1-core. For each vertex v in F, let a(v) =max{k—d(v),0}.
For each vertex v, take a(v) copies of M and link each to v by an
edge between v and a vertex in M. The resulting graph G has F as
its proper k-shell.

[
A graph F can be a proper 1-shell if and only if F is a forest.
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k-Shells

The size m of a k-shell with order n satisfies [%1 <m<k

The non-boundary vertices of the k-shell of G can be successively
deleted so that when deleted, they have degree at most k. Thus
m < k-n. The non-boundary vertices have degree at least k, so

there are at least % edges.

Ol

Corollary

~

Let sy be the order of the k-shell of G, 0 < k <r= C(G). Then
the size m of G satisfies

" [ k-sg g k+1
kzj > wSmnglk-sk—< 5 )
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Proposition

The size m of a k-shell with order n and b boundary vertices

satisfies . .
[ "72+b“§m§k-n< —:—I—l)‘

Proof.

When deleted, the it" to last vertex can have degree at most
b+i—1. Thus the upper bound must be reduced by
Yobi= (kfb)(zﬂ = (*"5*1). The boundary vertices each
contribute degree at least one to the lower bound. The result
follows.
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Let s; be the order of the k-shell of G and by be the order of the

~

k-boundary of G, 0 < k <r= C(G). Then the size m of G satisfies

" [ ks, + by J k—by+1
— | < m< -Sk — .
o i 1 G W)

k
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The Structure of k-Cores
Proposition
If G is connected, then its 2-core is connected.

Let G be connected, and u,v € Co(G). Then there is a u— v path

in G. The vertices on the path all have degree at least two, and all
are adjacent to at least two vertices in a set with minimum degree

two, since u and v are in the 2-core of G. Thus the u— v path is in
the 2-core of G, so it is connected.

]
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The Structure of k-Cores

Theorem

A vertex v of G is contained in the 2-core of G if and only if v is
on a cycle or v is on a path between vertices of distinct cycles.

Proof.

(«<=) Let v be on a cycle or a path between vertices of distinct
cycles. Both such graphs are themselves 2-cores, so v is in the
2-core of G.

(=) Let v be in the 2-core of G. If v is on a cycle, we are done. If
not, then consider a longest path P in the 2-core through v. All the
edges incident with v must be bridges, so v is in the interior of P.
An end-vertex u of P must have another neighbor, which cannot be
a new vertex, so it must be on P. If its neighbor were on the
opposite side of v, then v would be on a cycle. Thus its neighbor
must be between u and v on P. Repeating this argument for the
other end of P shows that v is on a path between vertices on cycles.

[]
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The Structure of k-Cores

A graph G is a 2-core <> every end-block of G is 2-connected.

Proof.

If every end-block of G is 2-connected, then every vertex of G is
either on a cycle or a path between cycles. Thus G is a 2-core. If
some end-block of G is not 2-connected, then it is K3, so G has a
vertex of degree one and is not a 2-core.

Ol

A block-tree decomposition of a 2-core G is a decomposition of G
into 2-connected blocks and trees so that if T is nontrivial, each
end-vertex of T is shared with a distinct 2-connected block, if T is
trivial, it is a cut-vertex of at least two 2-connected blocks, and
there are no two disjoint paths between two distinct blocks.
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The Structure of k-Cores

Every 2-core has a unique block-tree decomposition.

Proof.

Let F be the subgraph of a 2-core G induced by the bridges and
cut-vertices of G. Then F is acyclic, so it is a forest. Break each
component of F into branches at any vertex contained in a
component of G — F. Also break G — F into blocks, which must be
2-connected. By the previous corollary, each end-vertex of each of
the trees must overlap a 2-connected block. If any block contained
two end-vertices of the same tree, then there would be a cycle
containing edges from the tree. If there were two disjoint paths
between two blocks, they wouldn't be distinct. This decomposition
is unique because the block decomposition of a graph is unique and
any blocks that are K5 and on a path between 2-connected blocks
that does not go through any other 2-connected blocks must be in
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The Structure of k-Cores

[Whitney, see West p. 163] A graph is 2-connected <> it has an
ear decomposition. Every cycle is the cycle in some ear
decomposition.
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The Structure of k-Cores

[Whitney, see West p. 163] A graph is 2-connected <> it has an
ear decomposition. Every cycle is the cycle in some ear
decomposition.

[Bollobas p. 15] Let G be a minimally 2-connected graph that is
not a cycle. Let D C V (G) be the set of vertices of degree two.
Then F = G — D is a forest with at least two components. Each
component P of G[D] is a path and the end-vertices of P are not
Joined to the same tree of the forest F.
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The Structure of k-Cores

A graph G which is not a cycle is minimally 2-connected <= it has
an ear decomposition with each path of length at least 2, no ear
Joined to vertices in a single component of F, and no ear connects
or creates a cycle in F.

(=) Let G be minimally 2-connected. Then G has an ear
decomposition. A path of length one in the ear decomposition
would be an essential edge. So would an edge between vertices in a
component of F that are the ends of an ear. The final condition is
implied by the second theorem.

(«=) Assume the hypothesis. The ear decomposition implies that G
is 2-connected. Adding the first ear makes F disconnected, and
adding subsequent ears keep it a forest. The ears must connect
different components of F. By the previous theorem, G is minimal.

[
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The Structure of k-Cores

A graph G is a connected 2-core <= it is contained in the set S
whose members can be constructed by the following rules.

1. All cycles are in S.

2. Given one or two graphs in S, the result of joining the ends of a
(possibly trivial) path to it or them is in S.
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The Structure of k-Cores

Proof.

(<) A cycle has minimum degree 2, and applying step 2 does not
create any vertices of lower degree, so a graph in S is a 2-core.
(=) This is clearly true if G has order 3. Assume the result holds
for orders up to r, and let G have order r+1. Let P be an ear or
cut-vertex of G. Making P = K3 is only necessary when G has
minimum degree at least 3 and is 2-connected. In this case, edges
can be deleted until one of these conditions fails to hold. Then if P
has internal vertices, deleting them results in a component or
components with order at most r. The same is true if P is a
cut-vertex, and G is split into blocks. Then the result follows by
induction.
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The Structure of k-Cores

Theorem

The set of connected 2-monocore graphs is equivalent to the set S
of graphs that can be constructed using the following rules.

1. All cycles are in S.

2. Given one or two graphs in S, the graph H formed by identifying
the ends of a path of length at least two with vertices of the graph
or graphs isin S.

3. Given a graph G in S, form H by taking a cycle and either
identifying a vertex of the cycle with a vertex of G or adding an
edge between one vertex in each.
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The Structure of k-Cores

Proof.

(<) We first show that if G isin S, then G is 2-monocore.
Certainly cycles are 2-monocore. Let H be formed from G in S by
applying rule 2. Then H has minimum degree 2 and since G is
3-core-free and internal vertices of the path have degree 2, H is
also 3-core-free. Thus H is 2-monocore. The same argument works
for adding a path between two graphs. Let H be formed from G in
S by applying rule 3. Then H has minimum degree 2 and since G is
3-core-free and all but one vertex of the cycle have degree 2, H is
also 3-core-free. Thus H is 2-monocore.

(=) We now show that if G is 2-monocore, it is in S. This clearly
holds for all cycles, including Cs, so assume it holds for all
2-monocore graphs of order up to r. Let G be 2-monocore of order
r+1 and not a cycle. Then G has minimum degree 2, so it has a
vertex v of degree 2. Then v is contained in P, an ear of length at
least 2, or C, a cycle which has all but one vertex of degree 2.

L]
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The Structure of k-Cores

Proof.

Case 1. G has an ear P. If G — P is disconnected, then the
components of G are 2-monocore, and hence in S. Then G can be
formed from them using rule 2, so G isin S. If G — P is connected,
then it is 2-monocore, and hence in S. Then G can be formed from
G — P using rule 2, so G isin S.
Case 2. We may assume that G has no such ear P. Then G has a
cycle C with all but one vertex of degree 2, and one vertex u of
degree more than 2. If u has degree at least 4 in G, then let H be
formed by deleting all the vertices of C except u. Then H is
2-monocore, and G can be formed from it using rule 3. If d (v) =3,
then its neighbor not in the cycle has degree at least three, so
G — C is 2-monocore, and G can be formed from it by using rule 3.
L]

Allan Bickle The k-Cores of a Graph



The Structure of k-Cores

Corollary

The set of 2-shells is equivalent to the set S’ of graphs constructed
using the following rules.

1. All graphs in set S from the previous theorem and all 3-cores are
inS'.

2. Given one or two graphs in S', the graph H formed by
identifying the ends of a path of length at least two with vertices of
the graph or graphs is in S'.

3. Given a graph G in S', form H by taking a cycle and either
identifying a vertex of the cycle with a vertex of G or adding an
edge between one vertex in each.

Finally, delete the 3-cores (keeping boundary vertices) last.
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The Structure of k-Cores

Every 3-core has K4 as a minor.
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The Structure of k-Cores

Let H be a graph with A(H) <3. Then G has H as a minor <—
G has a subdivision of H.

Every 3-core contains a subdivision of K.
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The Structure of k-Cores

Let H be a graph with A(H) <3. Then G has H as a minor <—
G has a subdivision of H.

Every 3-core contains a subdivision of K.
Every end-block of a 3-core contains a subdivision of Ky.

Proof.

A subdivision of K4 cannot contain a cut-vertex, so it must be

contained in some block of a 3-core. Form a graph with two copies
of an end-block of a 3-core by identifying their unique cut-vertices.
The graph that results is a 3-core, so it has a subdivision of K4 in a

block.
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The Structure of k-Cores

Proposition

[Chartrand/Lesniak p. 72] Let G be a k-core of order n and
1</<n—1.1fk> {%’_2] then G is /-connected.

Assume the hypothesis. Then the sum of the degrees of any two
nonadjacent vertices of G is at least n+/—2, so they have at least
I common neighbors. Thus G is /-connected.

O
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The Structure of k-Cores

Corollary

Let G be a k-core with order n. If k+1 < n < 2k-+2, then
diam(H) = 2.

Assume the hypothesis. Since k < n—1, G is not complete, so its
diameter is at least 2. By the previous result, any pair of
nonadjacent vertices has a common neighbor since n <2k —1+2.
Thus diam(G) = 2.

Ol
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The Structure of k-Cores

[Chartrand/Lesniak page 294] Let n > r > 2. Then every graph of

order n and size at least L(zrr_}z) nzj +1 contains K, as a subgraph.

Corollary

[Seidman 1983] A k-core with order n must contain a clique K, as
a subgraph if n < (“=3) k.

Let H be a k-core with order n < (*=%) k. Then k> (=2)n, so H
has size m with

n-k r—2Y\ , r—23\ ,
m>— > nc > nc|.
2 2r—2 2r —2

Thus m> | (£%) n?| +1, so by the previous theorem, H contains

K, as a subgraph.
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The Structure of k-Cores

Theorem

[Seidman 1983] Let H be a connected k-core with order n > 2k +2
and connectivity [, then

p—2k—2
B

where B = max{k+1,3/} and r is the element of {0,...,f —1}
such that r = n—2k —2 (mod ) and

0 0<r</!
b(nk,)=< 1 I<r<2/ .

2 21 <r

diam(H)§3{ J+b(n,k,/)+3
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The Structure of k-Cores

Corollary
[Moon 1965] If H has order n > 2k +2, then

: n
< - —
dlam(H)_3L( 1J—|—a(p,k) 3,

where
p=0(modk+1)
p=1

0
a(p,k)=¢ 1 (modk+1) .
2 else

<P O<p
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Thank You

Thank You!
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