Introduction to the k-Cores of a Graph

Allan Bickle

Western Michigan University

Date

Definition

The k-core of a graph G is the maximal induced subgraph $H \subseteq G$ such that $\delta(H) \geq k$.

- The k-core was introduced by Steven B. Seidman in a 1983 paper entitled Network structure and minimum degree.

Basics

Proposition

The k-core is well-defined.

Proposition

The cores are nested. That is, if $k>j$, then $C_{k}(G) \subseteq C_{j}(G)$.

Basics

Proposition

The k-core is well-defined.

Proposition

The cores are nested. That is, if $k>j$, then $C_{k}(G) \subseteq C_{j}(G)$.

G is its own 0-core.

The 1-core of G.

The 2-core of G.

Basics

The 3 -core of G is $2 K_{4}$.

Definition

The core number of a vertex, $C(v)$, is the largest value for k such that $v \in C_{k}(G)$.
The maximum core number of a graph, $\widehat{C}(G)$, is the maximum of the core numbers of the vertices of G.

- It is immediate that $\delta(G) \leq \widehat{C}(G) \leq \triangle(G)$.

Basics

Proposition

Let G be a connected graph. Then $\widehat{C}(G)=\triangle(G) \Longleftrightarrow G$ is regular.

Proof.

If G is regular, then $\delta(G)=\triangle(G)$, so the result is obvious.
For the converse, let $\widehat{C}(G)=\triangle(G)=k$. Then G has a subgraph H with $\delta(H)=\triangle(G) \geq \triangle(H)$, so H is k-regular. If H were not all of G, then since G is connected, some vertex of H would have a neighbor not in H, implying that $\triangle(G)>\triangle(H)=\delta(H)=\triangle(G)$.
But this is not the case, so $G=H$, and G is regular.

Basics

Definition

If the maximum core number and minimum degree of G are equal, $\widehat{C}(G)=\delta(G)$, we say G is k-monocore.

- We need a way to determine the k-core of a graph.

The k-core algorithm (sketch)

Input: graph G with adjacency matrix A, integer k, degree array D. Recursion: Delete all vertices with degree less than k from G. (That is, make a list of such vertices, zero out their degrees, and decrement the degrees of their neighbors.) Result: The vertices that have not been deleted induce the k-core.

Basics

Theorem

Applying the k-core algorithm to graph G yields the k-core of G, provided it exists.

Proof.

Let G be a graph and H be the result of the algorithm.
Let $v \in H$. Then v has at least k neighbors in H. Then $\delta(H) \geq k$. Then $H \subseteq C_{k}(G)$.
Let $v \in C_{k}(G)$. Then v is an element of a set of vertices, each of which has at least k neighbors in the set. None of these vertices will be deleted in the first iteration. If none have been deleted by the $n^{\text {th }}$ iteration, none will be deleted by the $n+1^{\text {st }}$ iteration. Thus none will ever be deleted. Thus $v \in H$. Thus $C_{k}(G) \subseteq H$.
Thus $H=C_{k}(G)$, so the algorithm yields the k-core.

Theorem

[Batagelj/Zaversnik 2003] The k-core algorithm has efficiency $O(m)$. (That is, it is linear on the size m.)

- This depends on using an edge list as the data structure.

Basics

Definition

A vertex deletion sequence of a graph G is a sequence that contains each of its vertices exactly once and is formed by successively deleting a vertex of smallest degree.

- We may wish to construct a graph by successively adding vertices of relatively small degree.

Definition

A vertex construction sequence of a graph is the reversal of a deletion sequence.

Basics

Definition

A graph is k-degenerate if its vertices can be successively deleted so that when deleted, each has degree at most k. The degeneracy of a graph is the smallest k such that it is k-degenerate.

- Thus the k-core algorithm implies a natural min-max relationship.

Corollary

For any graph, its maximum core number is equal to its degeneracy.

Proof.

Let G be a graph with degeneracy d and $k=\widehat{C}(G)$. Since G has a k-core, it is not k - 1 -degenerate, so $k \leq d$. Since G has no $k+1$-core, running the k-core algorithm for the value $k+1$ destroys the graph, so G is k-degenerate, and $k=d$.

- Many important classes of graphs are monocore.

Class of Graphs	Maximum Core Number
r-regular	r
nontrivial trees	1
forests (no trivial components)	1
complete bipartite $K_{a, b}, a \leq b$	a
$K_{a_{1}, \ldots, a_{n}}, a_{1} \leq a_{2} \leq \ldots \leq a_{n}$	$a_{1}+\ldots+a_{n-1}$
wheels	3
maximal outerplanar, $n \geq 3$	2

Basics

- For more general classes of graphs, we may only be able to bound the maximum core number.

Proposition

If G is planar, $\widehat{C}(G) \leq 5$. If G also has order $n<12$, then $\widehat{C}(G) \leq 4$.

Proof.

If there were a planar 6 -core, it would have $2 m=\sum d\left(v_{i}\right) \geq 6 n$, that is, $m \geq 3 n$. But every planar graph has $m \leq 3 n-6$. Let planar graph G have a 5 -core H, where H has order n, size m. Then $2 m=\sum d\left(v_{i}\right) \geq 5 n$, so $m \geq \frac{5}{2} n$. Since H is planar, $m \leq 3 n-6$. Thus $\frac{5}{2} n \leq 3 n-6$, so $n(G) \geq n(H) \geq 12$.

Definition

For $k>0$, the k-shell of a graph $G, S_{k}(G)$, is the subgraph of G induced by the edges contained in the k-core and not contained in the $k+1$-core. For $k=0$, the 0 -shell of G is the vertices of the 0 -core not contained in the 1 -core.

Definition
The k-boundary of $G, B_{k}(G)$, is the set of vertices contained in
both the k-shell and the $k+1$-core.

k-Shells

Definition

For $k>0$, the k-shell of a graph $G, S_{k}(G)$, is the subgraph of G induced by the edges contained in the k-core and not contained in the $k+1$-core. For $k=0$, the 0 -shell of G is the vertices of the 0 -core not contained in the 1 -core.

Definition

The k-boundary of $G, B_{k}(G)$, is the set of vertices contained in both the k-shell and the $k+1$-core.

k-Shells

Definition

The proper k-shell of $G, S_{k}^{\prime}(G)$, is the subgraph of G induced by the non-boundary vertices of the k-shell. The order of the k-shell of G is defined to be the order of the proper k-shell.

- Thus the vertices of the proper k-shells partition the vertex set of G. A vertex has core number k if and only if it is contained in the proper k-shell of G. The proper k-shell is induced by the vertices with core number k.

A graph G.

The 2-shell of G.

k-Shells

The proper 2-shell of G.

k-Shells

Theorem

A graph F with vertex subset B can be a k-shell of a graph with boundary set B if and only if no component of F has vertices entirely in $B, \delta(B) \geq 1, \delta_{F}(V(F)-B)=k$, and F contains no subgraph H with $\delta_{H}(V(H)-B) \geq k+1$.

Proof.

(\Rightarrow) Let F be a k-shell of graph G with boundary set B. If any component of F had all vertices in B, it would be contained in the $k+1$-core of G. F is induced by edges, so $\delta(B) \geq 1$. If a vertex v in F and not in B had $d(v)<k$, it would not be in the k-core of
G. If F had such a subgraph H, it would be contained in the $k+1$-core of G.
(\Leftarrow) Let F be a graph satisfying these conditions. Overlap each vertex in B with a distinct vertex of a $k+1$-core G with sufficiently large order. Then F is the k-shell of the resulting graph.

Corollary

The 1-shell of G, if it exists, is a forest with no trivial components and at most one boundary vertex per component.

Proof.

F is acyclic, $\delta(F)=1$, and two boundary vertices in a tree are connected by a path, which would be in the 2 -core.

k-Shells

Theorem

A graph F can be a proper k-shell if and only if F does not contain a $k+1$-core.

Proof.

The forward direction is obvious.
Let F be a graph that does not contain a $k+1$-core. Let M be a $k+1$-core. For each vertex v in F, let $a(v)=\max \{k-d(v), 0\}$. For each vertex v, take $a(v)$ copies of M and link each to v by an edge between v and a vertex in M. The resulting graph G has F as its proper k-shell.

Corollary

A graph F can be a proper 1-shell if and only if F is a forest.

k-Shells

Proposition

The size m of a k-shell with order n satisfies $\left\lceil\frac{k \cdot n}{2}\right\rceil \leq m \leq k \cdot n$.

Proof.

The non-boundary vertices of the k-shell of G can be successively deleted so that when deleted, they have degree at most k. Thus $m \leq k \cdot n$. The non-boundary vertices have degree at least k, so there are at least $\frac{k \cdot n}{2}$ edges.

Corollary
Let s_{k} be the order of the k-shell of $G, 0 \leq k \leq r=\widehat{C}(G)$. Then the size m of G satisfies

$$
\sum_{k=1}^{r}\left\lceil\frac{k \cdot s_{k}}{2}\right\rceil \leq m \leq \sum_{k=1}^{r} k \cdot s_{k}-\binom{k+1}{2}
$$

k-Shells

Proposition

The size m of a k-shell with order n and b boundary vertices satisfies

$$
\left\lceil\frac{k \cdot n+b}{2}\right\rceil \leq m \leq k \cdot n-\binom{k-b+1}{2}
$$

Proof.

When deleted, the $i^{\text {th }}$ to last vertex can have degree at most $b+i-1$. Thus the upper bound must be reduced by $\sum_{i=1}^{k-b} i=\frac{(k-b)(k-b+1)}{2}=\binom{k-b+1}{2}$. The boundary vertices each contribute degree at least one to the lower bound. The result follows.

Corollary

Let s_{k} be the order of the k-shell of G and b_{k} be the order of the k-boundary of $G, 0 \leq k \leq r=\widehat{C}(G)$. Then the size m of G satisfies

$$
\sum_{k=1}^{r}\left\lceil\frac{k \cdot s_{k}+b_{k}}{2}\right\rceil \leq m \leq \sum_{k=1}^{r}\left(k \cdot s_{k}-\binom{k-b_{k}+1}{2}\right) .
$$

Proposition

If G is connected, then its 2 -core is connected.

Proof.

Let G be connected, and $u, v \in C_{2}(G)$. Then there is a $u-v$ path in G. The vertices on the path all have degree at least two, and all are adjacent to at least two vertices in a set with minimum degree two, since u and v are in the 2 -core of G. Thus the $u-v$ path is in the 2 -core of G, so it is connected.

The Structure of k-Cores

Theorem

A vertex v of G is contained in the 2-core of G if and only if v is on a cycle or v is on a path between vertices of distinct cycles.

Proof.

(\Leftarrow) Let v be on a cycle or a path between vertices of distinct cycles. Both such graphs are themselves 2-cores, so v is in the 2-core of G.
(\Rightarrow) Let v be in the 2 -core of G. If v is on a cycle, we are done. If not, then consider a longest path P in the 2 -core through v. All the edges incident with v must be bridges, so v is in the interior of P. An end-vertex u of P must have another neighbor, which cannot be a new vertex, so it must be on P. If its neighbor were on the opposite side of v, then v would be on a cycle. Thus its neighbor must be between u and v on P. Repeating this argument for the other end of P shows that v is on a path between vertices on cycles.

The Structure of k-Cores

Corollary

A graph G is a 2-core \Longleftrightarrow every end-block of G is 2-connected.

Proof.

If every end-block of G is 2-connected, then every vertex of G is either on a cycle or a path between cycles. Thus G is a 2 -core. If some end-block of G is not 2-connected, then it is K_{2}, so G has a vertex of degree one and is not a 2-core.

Definition

A block-tree decomposition of a 2-core G is a decomposition of G into 2 -connected blocks and trees so that if T is nontrivial, each end-vertex of T is shared with a distinct 2-connected block, if T is trivial, it is a cut-vertex of at least two 2-connected blocks, and there are no two disjoint paths between two distinct blocks.

The Structure of k-Cores

Corollary

Every 2-core has a unique block-tree decomposition.

Proof.

Let F be the subgraph of a 2-core G induced by the bridges and cut-vertices of G. Then F is acyclic, so it is a forest. Break each component of F into branches at any vertex contained in a component of $G-F$. Also break $G-F$ into blocks, which must be 2-connected. By the previous corollary, each end-vertex of each of the trees must overlap a 2-connected block. If any block contained two end-vertices of the same tree, then there would be a cycle containing edges from the tree. If there were two disjoint paths between two blocks, they wouldn't be distinct. This decomposition is unique because the block decomposition of a graph is unique and any blocks that are K_{2} and on a path between 2-connected blocks that does not go through any other 2-connected blocks must be in the same tree.

Theorem

[Whitney, see West p. 163] A graph is 2-connected \Longleftrightarrow it has an ear decomposition. Every cycle is the cycle in some ear decomposition.

Theorem
[Bollobas p. 15] Let G be a minimally 2-connected graph that is not a cycle. Let $D \subset V(G)$ be the set of vertices of degree two. Then $F=G-D$ is a forest with at least two components. Each component P of $G[D]$ is a path and the end-vertices of P are not joined to the same tree of the forest F

The Structure of k-Cores

Theorem

[Whitney, see West p. 163] A graph is 2-connected \Longleftrightarrow it has an ear decomposition. Every cycle is the cycle in some ear decomposition.

Theorem

[Bollobas p. 15] Let G be a minimally 2-connected graph that is not a cycle. Let $D \subset V(G)$ be the set of vertices of degree two. Then $F=G-D$ is a forest with at least two components. Each component P of $G[D]$ is a path and the end-vertices of P are not joined to the same tree of the forest F.

The Structure of k-Cores

Corollary

A graph G which is not a cycle is minimally 2-connected \Longleftrightarrow it has an ear decomposition with each path of length at least 2, no ear joined to vertices in a single component of F, and no ear connects or creates a cycle in F.

Proof.

(\Rightarrow) Let G be minimally 2 -connected. Then G has an ear decomposition. A path of length one in the ear decomposition would be an essential edge. So would an edge between vertices in a component of F that are the ends of an ear. The final condition is implied by the second theorem.
(\Leftarrow) Assume the hypothesis. The ear decomposition implies that G is 2-connected. Adding the first ear makes F disconnected, and adding subsequent ears keep it a forest. The ears must connect different components of F. By the previous theorem, G is minimal.

Theorem

A graph G is a connected 2-core \Longleftrightarrow it is contained in the set S whose members can be constructed by the following rules.

1. All cycles are in S.
2. Given one or two graphs in S, the result of joining the ends of a (possibly trivial) path to it or them is in S.

Proof.

(\Leftarrow) A cycle has minimum degree 2 , and applying step 2 does not create any vertices of lower degree, so a graph in S is a 2-core. (\Rightarrow) This is clearly true if G has order 3 . Assume the result holds for orders up to r, and let G have order $r+1$. Let P be an ear or cut-vertex of G. Making $P=K_{2}$ is only necessary when G has minimum degree at least 3 and is 2 -connected. In this case, edges can be deleted until one of these conditions fails to hold. Then if P has internal vertices, deleting them results in a component or components with order at most r. The same is true if P is a cut-vertex, and G is split into blocks. Then the result follows by induction.

The Structure of k-Cores

Theorem

The set of connected 2-monocore graphs is equivalent to the set S of graphs that can be constructed using the following rules.

1. All cycles are in S.
2. Given one or two graphs in S, the graph H formed by identifying the ends of a path of length at least two with vertices of the graph or graphs is in S.
3. Given a graph G in S, form H by taking a cycle and either identifying a vertex of the cycle with a vertex of G or adding an edge between one vertex in each.

The Structure of k-Cores

Proof.

(\Leftarrow) We first show that if G is in S, then G is 2-monocore.
Certainly cycles are 2-monocore. Let H be formed from G in S by applying rule 2. Then H has minimum degree 2 and since G is 3 -core-free and internal vertices of the path have degree $2, \mathrm{H}$ is also 3 -core-free. Thus H is 2 -monocore. The same argument works for adding a path between two graphs. Let H be formed from G in S by applying rule 3 . Then H has minimum degree 2 and since G is 3 -core-free and all but one vertex of the cycle have degree $2, H$ is also 3 -core-free. Thus H is 2 -monocore.
(\Rightarrow) We now show that if G is 2 -monocore, it is in S. This clearly holds for all cycles, including C_{3}, so assume it holds for all 2-monocore graphs of order up to r. Let G be 2-monocore of order $r+1$ and not a cycle. Then G has minimum degree 2 , so it has a vertex v of degree 2. Then v is contained in P, an ear of length at least 2 , or C, a cycle which has all but one vertex of degree 2 .

The Structure of k-Cores

Proof.

Case 1. G has an ear P. If $G-P$ is disconnected, then the components of G are 2 -monocore, and hence in S. Then G can be formed from them using rule 2 , so G is in S. If $G-P$ is connected, then it is 2 -monocore, and hence in S. Then G can be formed from $G-P$ using rule 2 , so G is in S.
Case 2. We may assume that G has no such ear P. Then G has a cycle C with all but one vertex of degree 2 , and one vertex u of degree more than 2. If u has degree at least 4 in G, then let H be formed by deleting all the vertices of C except u. Then H is 2 -monocore, and G can be formed from it using rule 3 . If $d(u)=3$, then its neighbor not in the cycle has degree at least three, so $G-C$ is 2-monocore, and G can be formed from it by using rule 3.

The Structure of k-Cores

Corollary

The set of 2-shells is equivalent to the set S^{\prime} of graphs constructed using the following rules.

1. All graphs in set S from the previous theorem and all 3-cores are in S^{\prime}.
2. Given one or two graphs in S^{\prime}, the graph H formed by identifying the ends of a path of length at least two with vertices of the graph or graphs is in S^{\prime}.
3. Given a graph G in S^{\prime}, form H by taking a cycle and either identifying a vertex of the cycle with a vertex of G or adding an edge between one vertex in each.
Finally, delete the 3-cores (keeping boundary vertices) last.

The Structure of k-Cores

Theorem

Every 3-core has K_{4} as a minor.

Cases 1, 2, and 3 .

The Structure of k-Cores

Theorem

Let H be a graph with $\triangle(H) \leq 3$. Then G has H as a minor \Longleftrightarrow G has a subdivision of H.

Corollary
Every 3-core contains a subdivision of K_{4}.
Corollary
Every end-block of a 3-core contains a subdivision of K_{4}

Proof

A subdivision of K_{4} cannot contain a cut-vertex, so it must be
contained in some block of a 3-core. Form a graph with two copies of an end-block of a 3-core by identifying their unique cut-vertices The graph that results is a 3-core, so it has a subdivision of K_{4} in a block

The Structure of k-Cores

Theorem

Let H be a graph with $\triangle(H) \leq 3$. Then G has H as a minor \Longleftrightarrow G has a subdivision of H.

Corollary

Every 3-core contains a subdivision of K_{4}.

Corollary

Every end-block of a 3-core contains a subdivision of K_{4}.

Proof.

A subdivision of K_{4} cannot contain a cut-vertex, so it must be contained in some block of a 3-core. Form a graph with two copies of an end-block of a 3-core by identifying their unique cut-vertices. The graph that results is a 3-core, so it has a subdivision of K_{4} in a block.

The Structure of k-Cores

Proposition

[Chartrand/Lesniak p. 72] Let G be a k-core of order n and $1 \leq I \leq n-1$. If $k \geq\left\lceil\frac{n+l-2}{2}\right\rceil$, then G is l-connected.

Proof.

Assume the hypothesis. Then the sum of the degrees of any two nonadjacent vertices of G is at least $n+I-2$, so they have at least I common neighbors. Thus G is l-connected.

Corollary

Let G be a k-core with order n. If $k+1<n<2 k+2$, then $\operatorname{diam}(H)=2$.

Proof.

Assume the hypothesis. Since $k<n-1, G$ is not complete, so its diameter is at least 2. By the previous result, any pair of nonadjacent vertices has a common neighbor since $n \leq 2 k-1+2$. Thus $\operatorname{diam}(G)=2$.

The Structure of k-Cores

Theorem

[Chartrand/Lesniak page 294] Let $n \geq r \geq 2$. Then every graph of order n and size at least $\left\lfloor\left(\frac{r-2}{2 r-2}\right) n^{2}\right\rfloor+1$ contains K_{r} as a subgraph.

Corollary

[Seidman 1983] A k-core with order n must contain a clique K_{r} as a subgraph if $n<\left(\frac{r-1}{r-2}\right) k$.

Proof.

Let H be a k-core with order $n<\left(\frac{r-1}{r-2}\right) k$. Then $k>\left(\frac{r-2}{r-1}\right) n$, so H has size m with

$$
m \geq \frac{n \cdot k}{2}>\left(\frac{r-2}{2 r-2}\right) n^{2} \geq\left\lfloor\left(\frac{r-2}{2 r-2}\right) n^{2}\right\rfloor
$$

Thus $m \geq\left\lfloor\left(\frac{r-2}{2 r-2}\right) n^{2}\right\rfloor+1$, so by the previous theorem, H contains K_{r} as a subgraph.

Theorem

[Seidman 1983] Let H be a connected k-core with order $n \geq 2 k+2$ and connectivity l, then

$$
\operatorname{diam}(H) \leq 3\left\lfloor\frac{p-2 k-2}{\beta}\right\rfloor+b(n, k, l)+3
$$

where $\beta=\max \{k+1,3 /\}$ and r is the element of $\{0, \ldots, \beta-1\}$ such that $r \equiv n-2 k-2(\bmod \beta)$ and

$$
b(n, k, l)=\left\{\begin{array}{cc}
0 & 0 \leq r<l \\
1 & I \leq r<2 l \\
2 & 2 l \leq r
\end{array}\right.
$$

The Structure of k-Cores
Corollary
[Moon 1965] If H has order $n \geq 2 k+2$, then

$$
\operatorname{diam}(H) \leq 3\left\lfloor\frac{n}{k+1}\right\rfloor+a(p, k)-3
$$

where

$$
a(p, k)=\left\{\begin{array}{cc}
0 & p \equiv 0(\bmod k+1) \\
1 & p \equiv 1(\bmod k+1) \\
2 & \text { else }
\end{array} .\right.
$$

Thank You!

