Introduction to the k-Cores of a Graph

Allan Bickle

Western Michigan University

Date

Allan Bickle The k-Cores of a Graph

The k-core of a graph G is the maximal induced subgraph $H \subseteq G$ such that $\delta(H) \ge k$.

• The k-core was introduced by Steven B. Seidman in a 1983 paper entitled *Network structure and minimum degree*.

Proposition

The k-core is well-defined.

Proposition

The cores are nested. That is, if k > j, then $C_k(G) \subseteq C_j(G)$.

Allan Bickle The k-Cores of a Graph

・日・ ・ ヨ・ ・

Proposition

The k-core is well-defined.

Proposition

The cores are nested. That is, if k > j, then $C_k(G) \subseteq C_j(G)$.

G is its own 0-core.

イロン イロン イヨン イヨン

三日 のへの

The 1-core of G.

イロト イヨト イヨト イヨト

三日 のへで

The 2-core of G.

< □ > < □ > < □ > < □ > < □ > < □ >

= 990

-

◆□ > ◆□ > ◆豆 > ◆豆 >

三日 のへで

The 3-core of G is $2K_4$.

The core number of a vertex, C(v), is the largest value for k such that $v \in C_k(G)$. The maximum core number of a graph, $\widehat{C}(G)$, is the maximum of the core numbers of the vertices of G.

• It is immediate that $\delta(G) \leq \widehat{C}(G) \leq \triangle(G)$.

Proposition

Let G be a connected graph. Then $\widehat{C}(G) = \triangle(G) \iff G$ is regular.

Proof.

If G is regular, then $\delta(G) = \triangle(G)$, so the result is obvious. For the converse, let $\widehat{C}(G) = \triangle(G) = k$. Then G has a subgraph H with $\delta(H) = \triangle(G) \ge \triangle(H)$, so H is k-regular. If H were not all of G, then since G is connected, some vertex of H would have a neighbor not in H, implying that $\triangle(G) > \triangle(H) = \delta(H) = \triangle(G)$. But this is not the case, so G = H, and G is regular.

If the maximum core number and minimum degree of G are equal, $\widehat{C}(G) = \delta(G)$, we say G is k-monocore.

• We need a way to determine the k-core of a graph.

The k-core algorithm (sketch)

Input: graph G with adjacency matrix A, integer k, degree array D. Recursion: Delete all vertices with degree less than k from G. (That is, make a list of such vertices, zero out their degrees, and decrement the degrees of their neighbors.) Result: The vertices that have not been deleted induce the k-core.

Theorem

Applying the k-core algorithm to graph G yields the k-core of G, provided it exists.

Proof.

Let G be a graph and H be the result of the algorithm. Let $v \in H$. Then v has at least k neighbors in H. Then $\delta(H) \ge k$. Then $H \subseteq C_k(G)$. Let $v \in C_k(G)$. Then v is an element of a set of vertices, each of which has at least k neighbors in the set. None of these vertices will be deleted in the first iteration. If none have been deleted by the n^{th} iteration, none will be deleted by the $n + 1^{st}$ iteration. Thus none will ever be deleted. Thus $v \in H$. Thus $C_k(G) \subseteq H$. Thus $H = C_k(G)$, so the algorithm yields the k-core.

Theorem

[Batagelj/Zaversnik 2003] The k-core algorithm has efficiency O(m). (That is, it is linear on the size m.)

• This depends on using an edge list as the data structure.

A vertex deletion sequence of a graph G is a sequence that contains each of its vertices exactly once and is formed by successively deleting a vertex of smallest degree.

• We may wish to construct a graph by successively adding vertices of relatively small degree.

Definition

A vertex construction sequence of a graph is the reversal of a deletion sequence.

A graph is k-degenerate if its vertices can be successively deleted so that when deleted, each has degree at most k. The degeneracy of a graph is the smallest k such that it is k-degenerate.

• Thus the k-core algorithm implies a natural min-max relationship.

Corollary

For any graph, its maximum core number is equal to its degeneracy.

Proof.

Let G be a graph with degeneracy d and $k = \widehat{C}(G)$. Since G has a k-core, it is not k-1-degenerate, so $k \leq d$. Since G has no k+1-core, running the k-core algorithm for the value k+1 destroys the graph, so G is k-degenerate, and k = d.

• Many important classes of graphs are monocore.

Class of Graphs	Maximum Core Number
<i>r</i> -regular	r
nontrivial trees	1
forests (no trivial components)	1
complete bipartite $K_{a,b}$, $a\leq b$	а
$K_{a_1,\ldots,a_n}, \ a_1 \leq a_2 \leq \ldots \leq a_n$	$a_1+\ldots+a_{n-1}$
wheels	3
maximal outerplanar, $n \ge 3$	2

• For more general classes of graphs, we may only be able to bound the maximum core number.

Proposition

If G is planar, $\widehat{C}(G) \leq 5$. If G also has order n < 12, then $\widehat{C}(G) \leq 4$.

Proof.

If there were a planar 6-core, it would have $2m = \sum d(v_i) \ge 6n$, that is, $m \ge 3n$. But every planar graph has $m \le 3n - 6$. Let planar graph G have a 5-core H, where H has order n, size m. Then $2m = \sum d(v_i) \ge 5n$, so $m \ge \frac{5}{2}n$. Since H is planar, $m \le 3n - 6$. Thus $\frac{5}{2}n \le 3n - 6$, so $n(G) \ge n(H) \ge 12$.

For k > 0, the k-shell of a graph G, $S_k(G)$, is the subgraph of G induced by the edges contained in the k-core and not contained in the k+1-core. For k = 0, the 0-shell of G is the vertices of the 0-core not contained in the 1-core.

Definition

The k-boundary of G, $B_k(G)$, is the set of vertices contained in both the k-shell and the k+1-core.

For k > 0, the k-shell of a graph G, $S_k(G)$, is the subgraph of G induced by the edges contained in the k-core and not contained in the k+1-core. For k = 0, the 0-shell of G is the vertices of the 0-core not contained in the 1-core.

Definition

The k-boundary of G, $B_k(G)$, is the set of vertices contained in both the k-shell and the k+1-core.

The proper k-shell of G, $S'_k(G)$, is the subgraph of G induced by the non-boundary vertices of the k-shell. The order of the k-shell of G is defined to be the order of the proper k-shell.

• Thus the vertices of the proper k-shells partition the vertex set of G. A vertex has core number k if and only if it is contained in the proper k-shell of G. The proper k-shell is induced by the vertices with core number k.

A graph G.

◆□ > ◆□ > ◆豆 > ◆豆 >

E 940

The 2-shell of G.

◆□ > ◆□ > ◆豆 > ◆豆 >

三日 のへで

The proper 2-shell of G.

= 9QC

< 문 ► < 문

k-Shells

Theorem

A graph F with vertex subset B can be a k-shell of a graph with boundary set B if and only if no component of F has vertices entirely in B, $\delta(B) \ge 1$, $\delta_F(V(F) - B) = k$, and F contains no subgraph H with $\delta_H(V(H) - B) \ge k + 1$.

Proof.

(⇒) Let *F* be a *k*-shell of graph *G* with boundary set *B*. If any component of *F* had all vertices in *B*, it would be contained in the k+1-core of *G*. *F* is induced by edges, so $\delta(B) \ge 1$. If a vertex *v* in *F* and not in *B* had d(v) < k, it would not be in the *k*-core of *G*. If *F* had such a subgraph *H*, it would be contained in the k+1-core of *G*.

(\Leftarrow) Let F be a graph satisfying these conditions. Overlap each vertex in B with a distinct vertex of a k + 1-core G with sufficiently large order. Then F is the k-shell of the resulting graph.

Corollary

The 1-shell of G, if it exists, is a forest with no trivial components and at most one boundary vertex per component.

Proof.

F is acyclic, $\delta(F) = 1$, and two boundary vertices in a tree are connected by a path, which would be in the 2-core.

Theorem

A graph F can be a proper k-shell if and only if F does not contain a k+1-core.

Proof.

The forward direction is obvious.

Let F be a graph that does not contain a k+1-core. Let M be a k+1-core. For each vertex v in F, let $a(v) = \max\{k-d(v), 0\}$. For each vertex v, take a(v) copies of M and link each to v by an edge between v and a vertex in M. The resulting graph G has F as its proper k-shell.

k-Shells

Proposition

The size m of a k-shell with order n satisfies $\left\lceil \frac{k \cdot n}{2} \right\rceil \le m \le k \cdot n$.

Proof.

The non-boundary vertices of the k-shell of G can be successively deleted so that when deleted, they have degree at most k. Thus $m \le k \cdot n$. The non-boundary vertices have degree at least k, so there are at least $\frac{k \cdot n}{2}$ edges.

Corollary

Let s_k be the order of the k-shell of G, $0 \le k \le r = \widehat{C}(G)$. Then the size m of G satisfies

$$\sum_{k=1}^{r} \left\lceil \frac{k \cdot s_k}{2} \right\rceil \le m \le \sum_{k=1}^{r} k \cdot s_k - \binom{k+1}{2}$$

Proposition

The size m of a k-shell with order n and b boundary vertices satisfies

$$\left\lceil \frac{k \cdot n + b}{2} \right\rceil \le m \le k \cdot n - \binom{k - b + 1}{2}.$$

Proof.

When deleted, the i^{th} to last vertex can have degree at most b+i-1. Thus the upper bound must be reduced by $\sum_{i=1}^{k-b} i = \frac{(k-b)(k-b+1)}{2} = \binom{k-b+1}{2}$. The boundary vertices each contribute degree at least one to the lower bound. The result follows.

Corollary

Let s_k be the order of the k-shell of G and b_k be the order of the k-boundary of G, $0 \le k \le r = \widehat{C}(G)$. Then the size m of G satisfies

$$\sum_{k=1}^{r} \left\lceil \frac{k \cdot s_k + b_k}{2} \right\rceil \le m \le \sum_{k=1}^{r} \left(k \cdot s_k - \binom{k - b_k + 1}{2} \right).$$

Proposition

If G is connected, then its 2-core is connected.

Proof.

Let G be connected, and $u, v \in C_2(G)$. Then there is a u - v path in G. The vertices on the path all have degree at least two, and all are adjacent to at least two vertices in a set with minimum degree two, since u and v are in the 2-core of G. Thus the u - v path is in the 2-core of G, so it is connected.

Theorem

A vertex v of G is contained in the 2-core of G if and only if v is on a cycle or v is on a path between vertices of distinct cycles.

Proof.

(\Leftarrow) Let v be on a cycle or a path between vertices of distinct cycles. Both such graphs are themselves 2-cores, so v is in the 2-core of G.

 (\Rightarrow) Let v be in the 2-core of G. If v is on a cycle, we are done. If not, then consider a longest path P in the 2-core through v. All the edges incident with v must be bridges, so v is in the interior of P. An end-vertex u of P must have another neighbor, which cannot be a new vertex, so it must be on P. If its neighbor were on the opposite side of v, then v would be on a cycle. Thus its neighbor must be between u and v on P. Repeating this argument for the other end of P shows that v is on a path between vertices on cycles.

Corollary

A graph G is a 2-core \iff every end-block of G is 2-connected.

Proof.

If every end-block of G is 2-connected, then every vertex of G is either on a cycle or a path between cycles. Thus G is a 2-core. If some end-block of G is not 2-connected, then it is K_2 , so G has a vertex of degree one and is not a 2-core.

Definition

A block-tree decomposition of a 2-core G is a decomposition of G into 2-connected blocks and trees so that if T is nontrivial, each end-vertex of T is shared with a distinct 2-connected block, if T is trivial, it is a cut-vertex of at least two 2-connected blocks, and there are no two disjoint paths between two distinct blocks.

Corollary

Every 2-core has a unique block-tree decomposition.

Proof.

Let F be the subgraph of a 2-core G induced by the bridges and cut-vertices of G. Then F is acyclic, so it is a forest. Break each component of F into branches at any vertex contained in a component of G - F. Also break G - F into blocks, which must be 2-connected. By the previous corollary, each end-vertex of each of the trees must overlap a 2-connected block. If any block contained two end-vertices of the same tree, then there would be a cycle containing edges from the tree. If there were two disjoint paths between two blocks, they wouldn't be distinct. This decomposition is unique because the block decomposition of a graph is unique and any blocks that are K_2 and on a path between 2-connected blocks that does not go through any other 2-connected blocks must be in the same tree.

Theorem

[Whitney, see West p. 163] A graph is 2-connected \iff it has an ear decomposition. Every cycle is the cycle in some ear decomposition.

Theorem

[Bollobas p. 15] Let G be a minimally 2-connected graph that is not a cycle. Let $D \subset V(G)$ be the set of vertices of degree two. Then F = G - D is a forest with at least two components. Each component P of G[D] is a path and the end-vertices of P are not joined to the same tree of the forest F.

Theorem

[Whitney, see West p. 163] A graph is 2-connected \iff it has an ear decomposition. Every cycle is the cycle in some ear decomposition.

Theorem

[Bollobas p. 15] Let G be a minimally 2-connected graph that is not a cycle. Let $D \subset V(G)$ be the set of vertices of degree two. Then F = G - D is a forest with at least two components. Each component P of G[D] is a path and the end-vertices of P are not joined to the same tree of the forest F.

Corollary

A graph G which is not a cycle is minimally 2-connected \iff it has an ear decomposition with each path of length at least 2, no ear joined to vertices in a single component of F, and no ear connects or creates a cycle in F.

Proof.

 (\Rightarrow) Let G be minimally 2-connected. Then G has an ear decomposition. A path of length one in the ear decomposition would be an essential edge. So would an edge between vertices in a component of F that are the ends of an ear. The final condition is implied by the second theorem.

(\Leftarrow) Assume the hypothesis. The ear decomposition implies that G is 2-connected. Adding the first ear makes F disconnected, and adding subsequent ears keep it a forest. The ears must connect different components of F. By the previous theorem, G is minimal.

Theorem

A graph G is a connected 2-core \iff it is contained in the set S whose members can be constructed by the following rules.

1. All cycles are in S.

2. Given one or two graphs in S, the result of joining the ends of a (possibly trivial) path to it or them is in S.

Proof.

 (\Leftarrow) A cycle has minimum degree 2, and applying step 2 does not create any vertices of lower degree, so a graph in S is a 2-core. (\Rightarrow) This is clearly true if G has order 3. Assume the result holds for orders up to r, and let G have order r+1. Let P be an ear or cut-vertex of G. Making $P = K_2$ is only necessary when G has minimum degree at least 3 and is 2-connected. In this case, edges can be deleted until one of these conditions fails to hold. Then if Phas internal vertices, deleting them results in a component or components with order at most r. The same is true if P is a cut-vertex, and G is split into blocks. Then the result follows by induction.

Theorem

The set of connected 2-monocore graphs is equivalent to the set S of graphs that can be constructed using the following rules. 1. All cycles are in S. 2. Given one or two graphs in S, the graph H formed by identifying

2. Given one or two graphs in *S*, the graph *H* formed by identifying the ends of a path of length at least two with vertices of the graph or graphs is in *S*.

3. Given a graph G in S, form H by taking a cycle and either identifying a vertex of the cycle with a vertex of G or adding an edge between one vertex in each.

Proof.

(\Leftarrow) We first show that if G is in S, then G is 2-monocore. Certainly cycles are 2-monocore. Let H be formed from G in S by applying rule 2. Then H has minimum degree 2 and since G is 3-core-free and internal vertices of the path have degree 2, H is also 3-core-free. Thus H is 2-monocore. The same argument works for adding a path between two graphs. Let H be formed from G in S by applying rule 3. Then H has minimum degree 2 and since G is 3-core-free and all but one vertex of the cycle have degree 2, H is also 3-core-free. Thus H is 2-monocore.

 (\Rightarrow) We now show that if G is 2-monocore, it is in S. This clearly holds for all cycles, including C_3 , so assume it holds for all 2-monocore graphs of order up to r. Let G be 2-monocore of order r+1 and not a cycle. Then G has minimum degree 2, so it has a vertex v of degree 2. Then v is contained in P, an ear of length at least 2, or C, a cycle which has all but one vertex of degree 2.

Proof.

Case 1. G has an ear P. If G - P is disconnected, then the components of G are 2-monocore, and hence in S. Then G can be formed from them using rule 2, so G is in S. If G - P is connected, then it is 2-monocore, and hence in S. Then G can be formed from G-P using rule 2, so G is in S. Case 2. We may assume that G has no such ear P. Then G has a cycle C with all but one vertex of degree 2, and one vertex u of degree more than 2. If u has degree at least 4 in G, then let H be formed by deleting all the vertices of C except u. Then H is 2-monocore, and G can be formed from it using rule 3. If d(u) = 3, then its neighbor not in the cycle has degree at least three, so G-C is 2-monocore, and G can be formed from it by using rule 3.

Corollary

The set of 2-shells is equivalent to the set S' of graphs constructed using the following rules.

1. All graphs in set S from the previous theorem and all 3-cores are in S'.

2. Given one or two graphs in S', the graph H formed by

identifying the ends of a path of length at least two with vertices of the graph or graphs is in S'.

3. Given a graph G in S', form H by taking a cycle and either identifying a vertex of the cycle with a vertex of G or adding an edge between one vertex in each.

Finally, delete the 3-cores (keeping boundary vertices) last.

Theorem

Every 3-core has K₄ as a minor.

Cases 1, 2, and 3.

Theorem

Let H be a graph with $\triangle(H) \leq 3$. Then G has H as a minor \iff G has a subdivision of H.

Corollary

Every 3-core contains a subdivision of K₄.

Corollary

Every end-block of a 3-core contains a subdivision of K_4 .

Proof.

A subdivision of K_4 cannot contain a cut-vertex, so it must be contained in some block of a 3-core. Form a graph with two copies of an end-block of a 3-core by identifying their unique cut-vertices. The graph that results is a 3-core, so it has a subdivision of K_4 in a block.

Theorem

Let H be a graph with $\triangle(H) \leq 3$. Then G has H as a minor \iff G has a subdivision of H.

Corollary

Every 3-core contains a subdivision of K₄.

Corollary

Every end-block of a 3-core contains a subdivision of K₄.

Proof.

A subdivision of K_4 cannot contain a cut-vertex, so it must be contained in some block of a 3-core. Form a graph with two copies of an end-block of a 3-core by identifying their unique cut-vertices. The graph that results is a 3-core, so it has a subdivision of K_4 in a block.

Proposition

[Chartrand/Lesniak p. 72] Let G be a k-core of order n and $1 \le l \le n-1$. If $k \ge \left\lceil \frac{n+l-2}{2} \right\rceil$, then G is l-connected.

Proof.

Assume the hypothesis. Then the sum of the degrees of any two nonadjacent vertices of G is at least n+l-2, so they have at least l common neighbors. Thus G is l-connected.

Corollary

Let G be a k-core with order n. If k+1 < n < 2k+2, then diam(H) = 2.

Proof.

Assume the hypothesis. Since k < n-1, G is not complete, so its diameter is at least 2. By the previous result, any pair of nonadjacent vertices has a common neighbor since $n \le 2k-1+2$. Thus diam(G) = 2.

Theorem

[Chartrand/Lesniak page 294] Let $n \ge r \ge 2$. Then every graph of order n and size at least $\lfloor \left(\frac{r-2}{2r-2}\right)n^2 \rfloor + 1$ contains K_r as a subgraph.

Corollary

[Seidman 1983] A k-core with order n must contain a clique K_r as a subgraph if $n < \left(\frac{r-1}{r-2}\right)k$.

Proof.

Let H be a k-core with order $n < \left(\frac{r-1}{r-2}\right)k$. Then $k > \left(\frac{r-2}{r-1}\right)n$, so H has size m with

$$m \ge \frac{n \cdot k}{2} > \left(\frac{r-2}{2r-2}\right) n^2 \ge \left\lfloor \left(\frac{r-2}{2r-2}\right) n^2 \right\rfloor.$$

Thus $m \ge \lfloor \left(\frac{r-2}{2r-2}\right) n^2 \rfloor + 1$, so by the previous theorem, H contains K_r as a subgraph.

Theorem

[Seidman 1983] Let H be a connected k-core with order $n \ge 2k+2$ and connectivity l, then

$$diam(H) \leq 3\left\lfloor \frac{p-2k-2}{\beta} \right\rfloor + b(n,k,l) + 3$$

where $\beta = \max\{k+1,3l\}$ and r is the element of $\{0,\ldots,\beta-1\}$ such that $r \equiv n-2k-2 \pmod{\beta}$ and

$$b(n,k,l) = \begin{cases} 0 & 0 \le r < l \\ 1 & l \le r < 2l \\ 2 & 2l \le r \end{cases}$$

Corollary

[Moon 1965] If H has order $n \ge 2k+2$, then

$$diam(H) \leq 3\left\lfloor \frac{n}{k+1} \right\rfloor + a(p,k) - 3,$$

where

$$a(p,k) = \begin{cases} 0 & p \equiv 0 \pmod{k+1} \\ 1 & p \equiv 1 \pmod{k+1} \\ 2 & else \end{cases}$$

Thank You!

Allan Bickle The k-Cores of a Graph

= 9QC

▶ ★ 문 ▶ ★

문 제 문