A New Spin on Cyclic Decompositions

Allan Bickle

Penn State Altoona

April 17, 2021

Allan Bickle A New Spin on Cyclic Decompositions

• Most textbooks introduce cyclic decompositions informally.

- We examine how to construct cyclic decompositions.
- First consider an odd vertex cycle.
- Number the vertices of K_{2r+1} from 0 to 2r.

- Let the length of an edge ij be whichever of i j and j i has the smallest positive residue mod n.
- The possible lengths range from 1 to r.
- Each set of edges with the same length is an orbit containing 2r + 1 edges.
- One way to construct a cyclic decomposition is to pick one edge from each orbit, and let G be the graph induced by this edge set.
- Repeatedly increasing the indices by 1 (mod *n*) produces 2r+1 copies of *G* that cyclically decompose K_{2r+1} .

- More generally, if 2r + 1 = ks, we could pick exactly *s* edges from each orbit that are *k* steps apart in each orbit, producing a cyclic *k*-decomposition.
- A factor could use no edges from an orbit, but it must have the same number of edges from each orbit if it has any.

- Sow consider an even vertex cycle, numbered from 0 to 2r−1.
- There are r-1 sets of 2r edges with lengths 1 to r-1.
- However, the set of edges with length r (the **diameters**) has only r edges.
- Thus if we choose one edge from the diameters, we must choose two edges *r* steps apart from each other orbit.
- In general, if we choose *s* edges from the diameters, we must choose 2*s* edges from each other orbit from which we select edges.

Graph Labeling

- Constructing cyclic decompositions isn't difficult, but the opposite problem of determining whether a given graph cyclically decomposes a given complete graph is more challenging.
- If a graph can use exactly one edge from each class, it can cyclically decompose K_{2m+1} .
- Vertex labelings can be used to characterize these cyclic decompositions.

Definition

A labeling $f(v): V(G) \rightarrow \{0, ..., 2m\}$ of a graph G with size m is a *p*-labeling if exactly one of each pair $\{i, 2m+1-i\}, 1 \le i \le m$, occurs as a difference |f(u) - f(v)| for $uv \in E(G)$. A labeling $f(v): V(G) \rightarrow \{0, ..., m\}$ of the vertices of a graph G is a graceful labeling if each value in $\{1, ..., m\}$ occurs exactly once as a difference |f(u) - f(v)| for $uv \in E(G)$. A graph is graceful if it has a graceful labeling.

Graph Labeling

- Much work on these labelings has focused on trees.
- Ringel [1964] conjectured that any tree T with size m decomposes K_{2m+1}.
- Kotzig conjectured that there is always a cyclic *T*-decomposition of K_{2m+1}.
- Alexander Rosa stated that this is equivalent to the conjecture that every tree has a ho-labeling.
- Rosa also published the following stronger conjecture.

Conjecture

(Graceful Tree Conjecture | Rosa [1967]) Every tree is graceful.

 Montgomery, Pokrovskiy, and Sudakov [2020] proved Ringel's Conjecture and Kotzig's Conjecture for sufficiently large n.

Rosa's Characterization

- Rosa used "β-labeling" for what would later be called graceful labeling.
- Clearly every graceful labeling is also a ρ -labeling. A graceful labeling of a tree with size four and the corresponding cyclic decomposition of K_9 are illustrated below.

Rosa's Characterization

Theorem

A cyclic decomposition of K_{2m+1} into copies of a graph G with size m exists if and only if G has a ρ -labeling.

- This theorem was stated by Rosa [1967].
- I wanted to see a proof, but none of the secondary sources I consulted had one.
- Eventually, I got hold of Rosa's original paper.

- Let's examine the theorem there.
- First, we need the definition of cyclic decomposition.

Now let us show the connection between the introduced valuations and the so-called cyclic decompositions of the complete graph into isomorphic subgraphs.

By a length of an edge (v_i, v_j) in the graph $\langle n \rangle$ $(i, j = 1, 2, ..., n; i \neq j)$ we mean a number $d_{ij} = \min(|i - j|, n - |i - j|)$. By a turning of an edge (v_i, v_j) in a graph $\langle n \rangle$ we understand the increase of both indices by one, so that from the edge (v_i, v_j) we obtain the edge (v_{i+1}, v_{j+1}) , the indices taken modulo *n*. By a turning of a subgraph *G* in a graph $\langle n \rangle$ we understand the simultaneous turning of all edges of *G*.

By a decomposition of the complete graph $\langle n \rangle$ we mean an edge-disjoint decomposition, i. e., a system R of subgraphs such that any edge of the graph $\langle n \rangle$ belongs to exactly one of the subgraphs of R. A decomposition R of a graph $\langle n \rangle$ is said to be cyclic, if the following holds : If R contains a graph G, then it contains also the graph G' obtained by turning G.

Theorem 7. A cyclic decomposition of the complete graph $\langle 2n + 1 \rangle$ into subgraphs isomorphic to a given graph G with n edges exists if and only if there exists a ρ -valuation of the graph G.

イロト イボト イヨト イヨト

- According to Rosa:
- "By turning of an edge (v_i, v_j) in a graph $\langle n \rangle$ we understand the increase of both indices by one, so that from the edge (v_i, v_j) we obtain the edge (v_{i+1}, v_{j+1}) . By turning of a subgraph G in a graph $\langle n \rangle$ we understand the simultaneous turning of all edges of G."
- Note that Rosa is only allowing a single vertex cycle in this definition.
- "A decomposition R of a graph $\langle n \rangle$ is said to be cyclic, if the following holds: If R contains a graph G, then it contains also the graph G' obtained by turning G."
- There is some ambiguity in this definition!
- Can G = G', or must they be distinct?

• Is this decomposition cyclic?

- Definition A: Cyclic vertex permutation, factors map to factors
- Definition B: Cyclic vertex permutation, factors map to factors (distinct unless applied 2n+1 times)
- Note that in both definitions, the permutation of factors need not be cyclic.

- Which definition was intended?
- Let's examine Rosa's proof and see if context will answer the question.

I. The sufficiency is almost evident. Let a_i be the value of the vertex v_i in a p-valuation O_G of the graph G with n edges. Let us denote the vertices of the complete graph $\langle 2n + 1 \rangle$, so that $v_i = v_{a_i}$. Then

$$d_{ij} = \begin{cases} b_k & \text{if } b_k \leqslant n \\ 2n+1-b_k & \text{if } b_k > n \end{cases}$$

where b_k is the value of the edge h_k of G in O_G and d_{ij} is the length of the edge h_k . in the graph $\langle 2n + 1 \rangle$. This implies that the edges of G have in the graph $\langle 2n + 1 \rangle$ mutually different lengths, which again implies the existence of a cyclic decomposition of the complete graph $\langle 2n + 1 \rangle$ into subgraphs isomorphic to G, the last obtained by turning consecutively the graph G 2n times in $\langle 2n + 1 \rangle$.

• Showing that a ρ -labeling produces a cyclic decomposition of K_{2n+1} is routine.

Rosa's Proof

II. Let a cyclic decomposition of the complete graph $\langle 2n + 1 \rangle$ into subgraphs isomorphic to G be given. Let us take an arbitrary subgraph G_+ (G_+ is isomorphic to G) of 2n + 1 subgraphs of this decomposition and prove that the edges of G_+ have mutually different lengths in the graph $\langle 2n + 1 \rangle$. Suppose that G_+ contains two edges of equal length i, $1 \leq i \leq n$, for example $(v_x, v_{x+i}), (v_y, v_{y+i}), x \neq y$ (without loss on generality we can assume y > x). By the definition of a cyclic decomposition, this decomposition must also contain a graph $G_+^{(y-x)}$ obtained from G by turning it y - x times. The graph $G_+^{(y-x)}$ contains the edge (v_y, v_{y+i}) , which is a contradiction to the definition of a decomposition of a graph. So all the edges of G_+ have mutually different lengths in the graph $\langle 2n + 1 \rangle$, which means that there exists a p-valuation of G.

- Rosa considers decomposing K_{2n+1} into 2n+1 factors of size n.
- He wants to show that each edge has a distinct length.
- He assumes to the contrary that a factor contains two edges of equal length.

Rosa's Proof

II. Let a cyclic decomposition of the complete graph $\langle 2n + 1 \rangle$ into subgraphs isomorphic to G be given. Let us take an arbitrary subgraph G_+ (G_+ is isomorphic to G) of 2n + 1 subgraphs of this decomposition and prove that the edges of G_+ have mutually different lengths in the graph $\langle 2n + 1 \rangle$. Suppose that G_+ contains two edges of equal length $i, 1 \leq i \leq n$, for example $(v_x, v_{x+i}), (v_y, v_{y+i}), x \neq y$ (without loss on generality we can assume y > x). By the definition of a cyclic decomposition, this decomposition must also contain a graph $G_+^{(p-x)}$ obtained from G by turning it y - x times. The graph $G_+^{(p-x)}$ contains the edge (v_y, v_{y+i}) , which is a contradiction to the definition of a decomposition of a graph. So all the edges of G_+ have mutually different lengths in the graph $\langle 2n + 1 \rangle$, which means that there exists a p-valuation of G.

- He then points out that one of the edges would appear in a (different) copy of *G* formed by turning *G*.
- He concludes that this is a contradiction.
- This proof only works if edges of a given length can only be used once (Definition B).

• I have a proof that works for Definition A.

Theorem

A cyclic decomposition of K_{2m+1} into copies of a graph G with size m exists if and only if G has a ρ -labeling.

Proof.

(⇒) If a cyclic decomposition of K_{2m+1} into copies of a graph G with size m exists, then it contains 2m+1 factors. The edges with length I form an orbit, so if G contains r edges of length I, then r divides 2m+1. Further, if G contains an edge of length I', then it must contain r such edges. Thus r divides m. But gcd(m, 2m+1) = 1, so r = 1. Thus G contains at most one edge of each length, hence exactly one. Thus G has a ρ -labeling.

- Which definition of cyclic decomposition do later authors use?
- Fu/Wu [2004] have the following definition.
- "An automorphism of a STS (V, B) is a bijection such that
 {x, y, z} ∈ B if and only if {α(x), α(y), α(z)} ∈ B. A STS(v)
 is cyclic if it has an automorphism that is a permutation
 consisting of a single cycle of length v, for example
 (1,2,3,...v)."
- This seems consistent with Rosa (Definition A or B).

Other Authors' Definitions

- A survey article by Saad El-Zanati and Charles Vanden Eynden [2009] contains the following definitions.
- "by clicking we mean applying the isomorphism (i,j)
 ightarrow (i+1,j+1)."
- "Such a G-decomposition Δ is cyclic (purely cyclic) if clicking is a permutation (t-cycle) of Δ."
- The first definition is the same as Rosa (Definition A or B).
- Definition C (purely cyclic): Cyclic vertex permutation, induces cyclic permutation of factors.
- They state Rosa's result as:

Theorem

Let G be a graph with m edges. There exists a purely cyclic decomposition of K_{2m+1} if and only if G has a ρ -labeling.

イロト イボト イヨト イヨト

э

- Perhaps the most definitive source on graph labeling is Joseph Gallian's survey article [2019].
- "Rosa [2136] proved that a cyclic decomposition of the edge set of the complete graph K_{2q+1} into subgraphs isomorphic to a given graph G with q edges exists if and only if G has a ρ -labeling. (A decomposition of K_n into copies of G is called cyclic if the automorphism group of the decomposition itself contains the cyclic group of order n.)"
- Definition D: Vertex permutation, induces cyclic permutation of factors (order *n*).
- Order *n* implies a single vertex cycle, so this is Definition C when there must be *n* factors.

Color-cyclic Decompositions

• Note that according to Definitions A-D, the Walecki decomposition below is not cyclic.

- There is a definition that accounts for this.
- Definition E (color-cyclic): Vertex permutation, induces cyclic permutation of factors.

Color-cyclic Decompositions

• Given a color-cyclic decomposition, the vertices can be arranged in concentric circles so that one factor can be rotated onto each of the other factors. The following algorithm produces all color-cyclic *k*-decompositions of *K_n*.

Algorithm

Let σ be a permutation of n vertices whose odd cycles all have length a multiple of k, and whose even cycles all have length a multiple of 2k, except perhaps for one fixed point. For each edge orbit, select some edge, and every edge that is a multiple of k steps from it. Let G₀ be the graph induced by the edges, and G_i be the graph produced by applying σ to G₀ i times.

Theorem

A k-decomposition is color-cyclic, with permutation σ , if and only if it can be produced by the algorithm.

- A decomposition of a complete graph into two copies of a self-complementary graph must be color-cyclic, since each factor is mapped to the other.
- The theorem implies a characterization of the structure of self-complementary graphs.

Corollary

(Ringel [1963], Sachs [1962]) A graph G is self-complementary if and only if there is a permutation σ of V(G) so that each cycle of σ has length a multiple of 4, except for at most one fixed point, and G contains alternate edges along each edge orbit.

Summary of Definitions

- Definition A: Cyclic vertex permutation, factors map to factors
- Definition B: Cyclic vertex permutation, factors map to factors (distinct unless applied 2n+1 times)
- Definition C (purely cyclic): Cyclic vertex permutation, induces cyclic permutation of factors.
- Definition D: Vertex permutation, induces cyclic permutation of factors (order *n*).
- Definition E (color-cyclic): Vertex permutation, induces cyclic permutation of factors.
- To summarize, let A, B, C, D, E be sets of decompositions defined by Definitions A-E.
- Then $B \subseteq A$ and $D \subseteq C \subseteq E$.

- Perhaps we could define an even more general "cyclic" decomposition.
- Definition F: Vertex permutation, induces permutation of factors.
- (Both permutations can have multiple cycles.)
- Thus $B \subseteq A \subseteq F$ and $D \subseteq C \subseteq E \subseteq F$.
- Let's call this a factor-preserving decomposition.

Conjecture

A factor-preserving decomposition of K_{2m+1} into copies of a graph G with size m exists if and only if G has a ρ -labeling.

Non-cyclic Decompositions

- A decomposition of K_{2m+1} into copies of a graph G with size m does not have to be cyclic.
- Below K₅ → {5[P₃]}, and the centers of the red and blue factors are the same vertex.

• This generalizes to examples for all larger *m*.

Non-cyclic Decompositions

- There are also decompositions that are not factor-preserving.
- (AMSS [1988]) In fact, $K_6 \rightarrow \{3[P_6]\}$ in two ways, one cyclic and one not factor-preserving.

- The centers of the paths on the right induce P_4 .
- (AMSS [1988]) Also, K₁₀ → {9[K₄ − e]}, and the decomposition is not factor-preserving.

Thank You!

Fundamentals of Graph Theory

Allan Bickle

Allan Bickle

A New Spin on Cyclic Decompositions

э

Thank You!

Y. Alavi, P. J. Malde, A. J. Schwenk, and H. Swart, Non-color-cyclic factorizations of complete graphs, Congr. Numer. 63 (1988), 201-212.
S. El-Zanati and C. Vanden Eynden, On Rosa-type labelings and cyclic graph decompositions, Mathematica Slovaca, 59 1 (2009), 1-18.
H. Fu and S. Wu, Cyclically decomposing the complete graph into cycles, Discrete Math 282 1-3 (2004), 267-273.
J. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, https://www.combinatorics.org/ds6
R. Montgomery, A. Pokrovskiy, and B. Sudakov, A proof of Ringel's Conjecture, (2020) https://arxiv.org/abs/2001.02665
G. Ringel, Selbstkomplementare Graphen, Arch. Math. 14 (1963), 354-358.
G. Ringel, Problem 25, Theory of Graphs and its Applications (Proc. Sympos. Smolenice 1963), Nakl. CSAV, Praha, (1964), 162.

A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris, 1967, 349-355.

H. Sachs, Uber Selbstkomplementare Graphen, Publ. Math. Debrecen, 9 (1962), 270-288.