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Cyclic Decompositions

Most textbooks introduce cyclic decompositions informally.

We examine how to construct cyclic decompositions.

First consider an odd vertex cycle.

Number the vertices of K2r+1 from 0 to 2r .
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Cyclic Decompositions

Let the length of an edge ij be whichever of i − j and j− i
has the smallest positive residue mod n.

The possible lengths range from 1 to r .

Each set of edges with the same length is an orbit containing
2r +1 edges.

One way to construct a cyclic decomposition is to pick one
edge from each orbit, and let G be the graph induced by this
edge set.

Repeatedly increasing the indices by 1 (mod n) produces
2r +1 copies of G that cyclically decompose K2r+1.

∪ ∪ =
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Cyclic Decompositions

∪ ∪ ∪

More generally, if 2r +1 = ks, we could pick exactly s edges
from each orbit that are k steps apart in each orbit, producing
a cyclic k-decomposition.

A factor could use no edges from an orbit, but it must have
the same number of edges from each orbit if it has any.
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Cyclic Decompositions

Now consider an even vertex cycle, numbered from 0 to 2r −1.

There are r −1 sets of 2r edges with lengths 1 to r −1.

However, the set of edges with length r (the diameters) has
only r edges.

Thus if we choose one edge from the diameters, we must
choose two edges r steps apart from each other orbit.

In general, if we choose s edges from the diameters, we must
choose 2s edges from each other orbit from which we select
edges.

∪ ∪ =
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Graph Labeling

Constructing cyclic decompositions isn't di�cult, but the
opposite problem of determining whether a given graph
cyclically decomposes a given complete graph is more
challenging.
If a graph can use exactly one edge from each class, it can
cyclically decompose K2m+1.
Vertex labelings can be used to characterize these cyclic
decompositions.

De�nition

A labeling f (v) : V (G )→{0, ...,2m} of a graph G with size m is a
ρ-labeling if exactly one of each pair {i ,2m+1− i}, 1≤ i ≤m,
occurs as a di�erence |f (u)− f (v)| for uv ∈ E (G ).
A labeling f (v) : V (G )→{0, ...,m} of the vertices of a graph G is
a graceful labeling if each value in {1, ...,m} occurs exactly once
as a di�erence |f (u)− f (v)| for uv ∈ E (G ). A graph is graceful if
it has a graceful labeling.
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Graph Labeling

Much work on these labelings has focused on trees.

Ringel [1964] conjectured that any tree T with size m
decomposes K2m+1.

Kotzig conjectured that there is always a cyclic
T -decomposition of K2m+1.

Alexander Rosa stated that this is equivalent to the conjecture
that every tree has a ρ-labeling.

Rosa also published the following stronger conjecture.

Conjecture

(Graceful Tree Conjecture | Rosa [1967]) Every tree is graceful.

Montgomery, Pokrovskiy, and Sudakov [2020] proved Ringel's
Conjecture and Kotzig's Conjecture for su�ciently large n.
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Rosa's Characterization

Rosa used �β -labeling� for what would later be called graceful
labeling.

Clearly every graceful labeling is also a ρ-labeling. A graceful
labeling of a tree with size four and the corresponding cyclic
decomposition of K9 are illustrated below.
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Rosa's Characterization

Theorem

A cyclic decomposition of K2m+1 into copies of a graph G with size

m exists if and only if G has a ρ-labeling.

This theorem was stated by Rosa [1967].
I wanted to see a proof, but none of the secondary sources I
consulted had one.
Eventually, I got hold of Rosa's original paper.
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Rosa's De�nitions

Let's examine the theorem there.

First, we need the de�nition of cyclic decomposition.
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Rosa's De�nitions

According to Rosa:

�By turning of an edge (vi ,vj) in a graph 〈n〉 we understand
the increase of both indices by one, so that from the edge
(vi ,vj) we obtain the edge (vi+1,vj+1). By turning of a
subgraph G in a graph 〈n〉 we understand the simultaneous
turning of all edges of G .�

Note that Rosa is only allowing a single vertex cycle in this
de�nition.

�A decomposition R of a graph 〈n〉 is said to be cyclic, if the
following holds: If R contains a graph G , then it contains also
the graph G ′ obtained by turning G .�

There is some ambiguity in this de�nition!

Can G = G ′, or must they be distinct?
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Rosa's De�nitions

Is this decomposition cyclic?

De�nition A: Cyclic vertex permutation, factors map to factors

De�nition B: Cyclic vertex permutation, factors map to factors
(distinct unless applied 2n+1 times)

Note that in both de�nitions, the permutation of factors need
not be cyclic.
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Rosa's Proof

Which de�nition was intended?

Let's examine Rosa's proof and see if context will answer the
question.

Showing that a ρ-labeling produces a cyclic decomposition of
K2n+1 is routine.
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Rosa's Proof

Rosa considers decomposing K2n+1 into 2n+1 factors of size
n.

He wants to show that each edge has a distinct length.

He assumes to the contrary that a factor contains two edges of
equal length.
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Rosa's Proof

He then points out that one of the edges would appear in a
(di�erent) copy of G formed by turning G .

He concludes that this is a contradiction.

This proof only works if edges of a given length can only be
used once (De�nition B).
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A More General Proof

I have a proof that works for De�nition A.

Theorem

A cyclic decomposition of K2m+1 into copies of a graph G with size

m exists if and only if G has a ρ-labeling.

Proof.

(⇒) If a cyclic decomposition of K2m+1 into copies of a graph G
with size m exists, then it contains 2m+1 factors. The edges with
length l form an orbit, so if G contains r edges of length l , then r
divides 2m+1. Further, if G contains an edge of length l ′, then it
must contain r such edges. Thus r divides m. But
gcd(m,2m+1) = 1, so r = 1. Thus G contains at most one edge
of each length, hence exactly one. Thus G has a ρ-labeling.
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Other Authors' De�nitions

Which de�nition of cyclic decomposition do later authors use?

Fu/Wu [2004] have the following de�nition.

�An automorphism of a STS (V ,B) is a bijection such that
{x ,y ,z} ∈ B if and only if {α(x),α(y),α(z)} ∈ B . A STS(v)
is cyclic if it has an automorphism that is a permutation
consisting of a single cycle of length v, for example
(1,2,3, . . .v).�

This seems consistent with Rosa (De�nition A or B).
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Other Authors' De�nitions

A survey article by Saad El-Zanati and Charles Vanden Eynden
[2009] contains the following de�nitions.

�by clicking we mean applying the isomorphism
(i , j)→ (i +1, j +1).�

�Such a G -decomposition ∆ is cyclic (purely cyclic) if clicking
is a permutation (t-cycle) of ∆.�

The �rst de�nition is the same as Rosa (De�nition A or B).

De�nition C (purely cyclic): Cyclic vertex permutation, induces
cyclic permutation of factors.

They state Rosa's result as:

Theorem

Let G be a graph with m edges. There exists a purely cyclic

decomposition of K2m+1 if and only if G has a ρ-labeling.
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Other Authors' De�nitions

Perhaps the most de�nitive source on graph labeling is Joseph
Gallian's survey article [2019].

�Rosa [2136] proved that a cyclic decomposition of the edge
set of the complete graph K2q+1 into subgraphs isomorphic to
a given graph G with q edges exists if and only if G has a
ρ-labeling. (A decomposition of Kn into copies of G is called
cyclic if the automorphism group of the decomposition itself
contains the cyclic group of order n.)�

De�nition D: Vertex permutation, induces cyclic permutation
of factors (order n).

Order n implies a single vertex cycle, so this is De�nition C
when there must be n factors.
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Color-cyclic Decompositions

Note that according to De�nitions A-D, the Walecki

decomposition below is not cyclic.

There is a de�nition that accounts for this.

De�nition E (color-cyclic): Vertex permutation, induces cyclic
permutation of factors.

Allan Bickle A New Spin on Cyclic Decompositions



Color-cyclic Decompositions

Given a color-cyclic decomposition, the vertices can be
arranged in concentric circles so that one factor can be rotated
onto each of the other factors. The following algorithm
produces all color-cyclic k-decompositions of Kn.

Algorithm

Let σ be a permutation of n vertices whose odd cycles all have

length a multiple of k , and whose even cycles all have length a

multiple of 2k , except perhaps for one �xed point. For each edge

orbit, select some edge, and every edge that is a multiple of k steps

from it. Let G0 be the graph induced by the edges, and Gi be the

graph produced by applying σ to G0 i times.

Theorem

A k-decomposition is color-cyclic, with permutation σ , if and only

if it can be produced by the algorithm.
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Color-cyclic Decompositions

A decomposition of a complete graph into two copies of a
self-complementary graph must be color-cyclic, since each
factor is mapped to the other.

The theorem implies a characterization of the structure of
self-complementary graphs.

Corollary

(Ringel [1963], Sachs [1962]) A graph G is self-complementary if

and only if there is a permutation σ of V (G ) so that each cycle of

σ has length a multiple of 4, except for at most one �xed point,

and G contains alternate edges along each edge orbit.
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Summary of De�nitions

De�nition A: Cyclic vertex permutation, factors map to factors

De�nition B: Cyclic vertex permutation, factors map to factors
(distinct unless applied 2n+1 times)

De�nition C (purely cyclic): Cyclic vertex permutation, induces
cyclic permutation of factors.

De�nition D: Vertex permutation, induces cyclic permutation
of factors (order n).

De�nition E (color-cyclic): Vertex permutation, induces cyclic
permutation of factors.

To summarize, let A,B,C ,D,E be sets of decompositions
de�ned by De�nitions A-E.

Then B ⊆ A and D ⊆ C ⊆ E .

Allan Bickle A New Spin on Cyclic Decompositions



Factor-Preserving Decompositions

Perhaps we could de�ne an even more general �cyclic�
decomposition.

De�nition F: Vertex permutation, induces permutation of
factors.

(Both permutations can have multiple cycles.)

Thus B ⊆ A⊆ F and D ⊆ C ⊆ E ⊆ F .

Let's call this a factor-preserving decomposition.

Conjecture

A factor-preserving decomposition of K2m+1 into copies of a graph

G with size m exists if and only if G has a ρ-labeling.
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Non-cyclic Decompositions

A decomposition of K2m+1 into copies of a graph G with size
m does not have to be cyclic.

Below K5→{5 [P3]}, and the centers of the red and blue
factors are the same vertex.

This generalizes to examples for all larger m.
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Non-cyclic Decompositions

There are also decompositions that are not factor-preserving.

(AMSS [1988]) In fact, K6→{3 [P6]} in two ways, one cyclic
and one not factor-preserving.

The centers of the paths on the right induce P4.

(AMSS [1988]) Also, K10→{9 [K4− e]}, and the
decomposition is not factor-preserving.
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Thank You!
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Thank You!
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