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Basics

De�nition

The k-core of a graph G is the maximal induced subgraph H ⊆ G
such that δ (H)≥ k .
The core number of a vertex, C (v), is the largest value for k such
that v ∈ Ck (G ).
The maximum core number of a graph, Ĉ (G ), is the maximum of
the core numbers of the vertices of G .
If the maximum core number and minimum degree of G are equal,
Ĉ (G ) = δ (G ), we say G is k-monocore.
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Basics

The k-core algorithm (sketch)

Input: graph G with adjacency matrix A, integer k , degree array D.
Recursion: Delete all vertices with degree less than k from G .
(That is, make a list of such vertices, zero out their degrees, and
decrement the degrees of their neighbors.)
Result: The vertices that have not been deleted induce the k-core.
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Basics

Theorem

Applying the k-core algorithm to graph G yields the k-core of G ,
provided it exists.

De�nition

A vertex deletion sequence of a graph G is a sequence that
contains each of its vertices exactly once and is formed by
successively deleting a vertex of smallest degree.
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Basics

De�nition

A graph is k-degenerate if its vertices can be successively deleted so
that when deleted, each has degree at most k . The degeneracy of a
graph is the smallest k such that it is k-degenerate.

Thus the k-core algorithm implies a natural min-max
relationship.

Corollary

For any graph, its maximum core number is equal to its degeneracy.
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Maximal k-degenerate Graphs

De�nition

A maximal k-degenerate graph G is a graph that is k-degenerate
and is maximal with respect to this property. That is, no more
edges can be added to G without creating a k +1-core.

k-degenerate graphs were introduced in 1970 by Lick and
White.

Maximal k-degenerate graphs are the upper extremal
k-monocore graphs.
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Maximal k-degenerate Graphs

A maximal 3-degenerate graph, which can be seen by successively
deleting 1, 2, and 3.
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Maximal k-degenerate Graphs

Theorem

The size of a maximal k-degenerate with order n is k ·n−
(
k+1
2

)
.

Proof.

If G is k-degenerate, then its vertices can be successively deleted so
that when deleted they have degree at most k . Since G is maximal,
the degrees of the deleted vertices will be exactly k until the
number of vertices remaining is at most k . After that, the n− j th

vertex deleted will have degree j . Thus the size m of G is

m =
k−1

∑
i=0

i +
n−1

∑
i=k

k =
k (k−1)

2
+k (n−k) = k ·n−

(
k +1

2

)
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Maximal k-degenerate Graphs

Theorem

[Lick/White 1970] Let G be a maximal k-degenerate graph of order
n, 1≤ k ≤ n−1. Then
a. G contains a k +1-clique and for n ≥ k +2, G contains
Kk+2− e as a subgraph.
b. For n ≥ k +2, G has δ (G ) = k, and no two vertices of degree k
are adjacent.
c. G has connectivity κ (G ) = k.
d. Given r, 1≤ r ≤ n, G contains a maximal k-degenerate graph of
order r as an induced subgraph. For n ≥ k +2, if d (v) = k, then G
is maximal k-degenerate if and only if G − v is maximal
k-degenerate.
e. G is maximal 1-degenerate if and only if G is a tree.
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Maximal k-degenerate Graphs

Corollary

Let G be a maximal k-degenerate graph of order n, 1≤ k ≤ n−1.
Then
a. For k ≥ 2, the number of nonisomorphic maximal k-degenerate
graphs of order k +3 is 3.
b. G is k-monocore.
c. G has edge-connectivity κ ′ (G ) = k, and for k ≥ 2, an edge set is
a minimum edge cut if and only if it is a trivial edge cut.
d. The number of maximal k-degenerate subgraphs of order n−1
is equal to the number of vertices of degree k in G that are in
distinct automorphism classes.
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Maximal k-degenerate Graphs

Proof.

a. Kk+2− e is the unique maximal k-degenerate graph of order
k +2. It has two automorphism classes of vertices, one with two,
one with k . Thus there are three possibilities for order k +3.
b. G has minimum degree k , and is k +1-core-free.
c. First, k = κ (G )≤ κ ′ (G )≤ δ (G ) = k . Certainly the edges
incident with a vertex of minimum degree form a minimum edge
cut. The result holds for Kk+1. Assume the result holds for all
maximal k-core-free graphs of order r, and let G have order r +1,
v ∈ G , d (v) = k , H = G − v . Let F be a minimum edge cut of G .
If F ⊂ E (H), the result holds. If F is a trivial edge cut for v , the
result holds. If F contained edges both from H and incident with v ,
it would not disconnect H and would not disconnect v from H.
d. Deleting any minimum degree vertex yields such a subgraph, and
deleting any other vertex destroys maximality. The subgraphs will
be distinct unless two minimum degree vertices are in the same
automorphism class.
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Degree Sequences

Lemma

Let G be maximal k-degenerate with order n and nonincreasing
degree sequence d1, ...,dn. Then di ≤ k +n− i .

Proof.

Assume to the contrary that di > k +n− i for some i . Let H be the
graph formed by deleting the n− i vertices of smallest degree.
Then δ (H) > k , so G has a k +1-core.
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Degree Sequences

Lemma

Let G be maximal k-degenerate with degree sequence
d1 ≥ . . .≥ dn = k . Then G has at most k +1 vertices whose
degrees are equal to the upper bound min{n−1, k +n− i}, one of
which is vn, and has exactly k +1 such vertices if and only if vn has
the other k as its neighborhood.

Proof.

If G had more than k +1 such vertices, then H = G − vn would
have a vertex with degree more than than the maximum possible. If
G has exactly k +1, then all but vn must have degree reduced by
exactly one in H when vn is deleted.
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Degree Sequences

We can generalize the characterization of degree sequences of
trees to maximal k-degenerate graphs.

Theorem

A nonincreasing sequence of integers d1, . . . , dn is the degree
sequence of a maximal k-degenerate graph G if and only if

k ≤ di ≤min{n−1, k +n− i} and ∑di = 2
[
k ·n−

(
k+1
2

)]
for

0≤ k ≤ n−1.
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Degree Sequences

Proof.

Let d1, . . . , dn be such a sequence.
(⇒) Certainly 4(G )≤ n−1. The other three conditions have
already been shown.
(⇐) For n = k +1, the result holds for G = Kk+1. Assume the
result holds for order r. Let d1, . . . , dr+1 be a nonincreasing
sequence that satis�es the given properties. Let d ′1, . . . , d

′
r be the

sequence formed by deleting dr+1 and decreasing k other numbers
greater than k by one, including any that achieve the maximum.
(There are at most k by the preceding lemma.) Then the new
sequence satis�es all the hypotheses and has length r, so it is the
degree sequence for some maximal k-degenerate graph H. Add
vertex vr+1 to H, making it adjacent to the vertices with degrees
that were decreased for the new sequence. Then the resulting graph
G has the original degree sequence and is maximal k-degenerate.
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Degree Sequences

Theorem

Let G be maximal k-degenerate with 4(G ) = r , n ≥ k +1, and ni
the number of vertices of degree i, k ≤ i ≤ r . Then

k ·nk +(k−1)nk+1+. . .+n2k−1 = n2k+1+. . .+(r −2k)nr +k (k +1)

Proof.

Assume the hypothesis, and let G have order n, size m. Then

∑
r
i=1 ni = n and

r

∑
i=k

i ·ni = 2m = 2

[
k ·n−

(
k +1

2

)]
= (2k)

r

∑
i=k

ni −k (k +1) .

Thus
r

∑
i=k

(i −2k)ni +k (k +1) = 0.
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Degree Sequences

Corollary

If T is a tree,

n1 = n3 +2n4 +3n5 + . . .+(r −2)nr +2.

For k = 2,

2n2 +n3 = n5 +2n6 +3n7 + . . .+(r −4)nr +6.
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Degree Sequences

We can bound the maximum degree of a maximal
k-degenerate graph. Intuitively, since there are approximately
k ·n edges in G , its maximum degree should be at least 2k ,
provided that G has order large enough to overcome the
constant

(
k+1
2

)
subtracted from the size.

Theorem

[Filakova, Mihok, and Semanisin 1997] If G is maximal
k-degenerate with n ≥

(
k+2
2

)
, then 4(G )≥ 2k.
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Further Structural Results

Theorem

A maximal k-degenerate graph G with n ≥ k +2 has
2≤ diam (G )≤ n−2

k
+1.

If the upper bound is an equality, then G has exactly two vertices of
degree k and every diameter path has them as its endpoints.

Figure: A maximal 3-degenerate graph with diameter 4 and n = 11.
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Further Structural Results

Proof.

Let G be maximal k-degenerate with r = diam (G ). For n ≥ k +2,
G is not complete, so diam (G )≥ 2. Now G contains u, v with
d (u,v) = r . Now G is k-connected, so by Menger's Theorem there
are at least k independent paths of length at least r between u and
v . Thus n ≥ k (r −1)+2, so r ≤ n−2

k
+1.

Let the upper bound be an equality, and d (u,v) = r . Then
n = k (r −1)+2, and since there are k independent paths between
u and v , all the vertices are on these paths. Thus
d (u) = d (v) = k . If another vertex w had degree k , then G −w
would be maximal k-degenerate with κ (G −w) = k−1, which is
impossible. Thus any other pair of vertices has distance less than r .
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Further Structural Results

Theorem

Let t1, . . . , tr be r positive integers which sum to t. Then a
maximal t-degenerate graph can be decomposed into r graphs with
degeneracies at most t1, . . . , tr , respectively.

Proof.

Consider a deletion sequence of a maximal t-degenerate graph G .
When a vertex is deleted, the edges incident with it can be
allocated to r subgraphs with at most t1, . . . , tr edges going to the
respective subgraphs. Thus the subgraphs have at most the stated
degeneracies.
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Further Structural Results

Corollary

A maximal k-degenerate graph G can be decomposed into Kk and
k trees of order n−k +1, which span G/Kk .

Proof.

If n = k , G = Kk , so let the k trees be k distinct isolated vertices.
Build G by successively adding vertices of degree k . Allocate one
edge to each of the k trees in such a way that each is connected.
To do this, assign an edge incident with a vertex of the original
clique to the unique tree containing that vertex. Any other edges
can be assigned to any remaining tree, since every tree contains
every vertex not in the original clique.
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Further Structural Results

Corollary

If k is odd, a maximal k-degenerate graph decomposes into k trees
of order n− k−1

2
.

Proof.

Let k = 2r −1. Then K2r can be decomposed into k trees of order
r +1.

Corollary

A maximal 2-degenerate graph has two spanning trees that contain
all its edges and overlap on exactly one edge. This 'overlap edge'
can be any edge that is the last to be deleted by the k-core
algorithm.
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Enumeration

We can prove a bijection between labeled maximal
k-degenerate graphs and a certain type of sequence.

Algorithm: Prufer k-code

Input: Labeled maximal k-degenerate graph of order n
Iteration: While more than k +1 vertices remain, delete the
least-labeled vertex v of degree k , and let Ai be the unordered set
of k neighbors of v .
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Enumeration

Figure: The Prufer 2-code of this graph is
{(4,6) ,(1,7) ,(4,7) ,(6,7)}.
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Enumeration

Theorem

There is a bijection between labeled maximal k-degenerate graphs
and Prufer k-codes.

It is possible to uncode a Prufer k-code.
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Enumeration

Consider uncoding the code {(4,6) ,(1,7) ,(4,7) ,(6,7)}.
2, 3, and 5 do not appear.

Make 2 adjacent to 4 and 6.

Make 3 adjacent to 1 and 7.

Make 1 adjacent to 4 and 7.

Make 4 adjacent to 6 and 7.

Add a triangle induced by {5,6,7}.
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Enumeration
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Enumeration

Theorem

There are at most
(
n

k

)n−k−1
labeled maximal k-degenerate graphs

of order n, with equality exactly when k = 1 or n < k(k+1)
k−1 .

Proof.

There are
(
n

k

)
di�erent possible sets, and the code contains

n−k−1 such sets. If there are fewer elements in the sets than
vertices, than any code with n−k−1 sets of k elements from [n]
will yield a graph since there will always be some element that does
not appear in any of the sets. This is equivalent to
k (n−k−1) < n, which gives k = 1 or n < k(k+1)

k−1 . However, if
k (n−k−1)≥ n, any sequence that contains every element of [n]
will not yield a graph.

Allan Bickle The k-Cores of a Graph



Enumeration

Corollary

There are exactly
(
n

k

)n−k−1−∏
n−k−1
t=1

(
t·k
k

)
labeled maximal

k-degenerate graphs of order n when n = k(k+1)
k−1 .

Order 3 4 5 6

Number 1 6 100 3285

The number of labeled maximal 2-degenerate graphs.

Order 4 5 6 7

Number 1 3 11 62

The number of unlabeled maximal 2-degenerate graphs.
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Enumeration

The maximal 2-degenerate graphs of order 5 and 6.
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k-Trees

De�nition

A k-tree is a graph that can be formed by starting with Kk+1 and
iterating the operation of making a new vertex adjacent to all the
vertices of a k-clique of the existing graph.

Theorem

Every maximal k-degenerate graph G contains a unique k-tree of
largest possible order containing a k +1-clique that can be used to
begin the construction of G.
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k-Trees

Proof.

It is obvious that every maximal k-degenerate graph can be
constructed beginning with a maximal k-tree. We prove uniqueness.
Suppose to the contrary that there is a maximal k-degenerate graph
containing two distinct maximal k-trees either of which can be used
to begin its construction. Let G be a counterexample of minimum
order n ≥ k +3 containing k-trees T1 and T2. Divide the vertices
of G into V (T1), V (T2), and S = V (G )−V (T1)−V (T2). Now
G has at least one vertex v of degree k . If v ∈ S , then G − v can
be constructed starting with either k-tree, so there is a smaller
counterexample. If v ∈ V (T1) and n (T1)≥ k +2, then G − v can
be still be constructed starting with some other vertex of T1, so
there is a smaller counterexample. If v ∈ V (Ti ), i ∈ {1,2}, and
Ti = Kk+1, then G cannot be constructed starting with Ti since
any maximal k-tree that can be used to begin construction of G
must contain Kk+2− e. Thus in any case we have a contradiction.
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k-Trees

A graph is chordal if it contains no induced cycle of length at
least four.

Each chordal graph has a simplicial elimination ordering. This
is a deletion sequence for which the neighbors of each vertex
when deleted induce a clique.

Theorem

A graph G is a k-tree ⇐⇒ G is maximal k-degenerate and G is
chordal with n ≥ k +1.
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k-Trees

Proof.

(⇒) Let G be a k-tree. G is clearly maximal k-degenerate, since
vertices of degree k can be successively deleted until Kk+1 remains.
The construction implies that G has a simplicial elimination
ordering, so it is chordal.
(⇐) Assume G is maximal k-degenerate and chordal. If n = k +1,
it is certainly a k-tree. Assume the result holds for order r, and let
G have order r +1. Then G has a vertex v of degree k . The
neighbors of v must induce a clique since if v had two nonadjacent
neighbors x and y , an x− y path of shortest length in G − v
together with yv and vx would produce a cycle with no chord.
Thus G − v is a k-tree, hence so is G .
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k-Trees

Theorem

A maximal k-degenerate graph is a k-tree if and only if it contains
no subdivision of Kk+2.

Proof.

(⇒) Let G be a k-tree. Certainly Kk+1 contains no subdivision of
Kk+2. Suppose G is a counterexample of minimum order with a
vertex v of degree k . Then G − v is a k-tree with no subdivision of
Kk+2, so the subdivision in G contains v . But then v is not one of
the k +2 vertices of degree k +1 in the subdivision, so it is on a
path P between two such vertices. Let its neighbors on P be u and
w . But since the neighbors of v form a clique, uw ∈ G − v , so P
can avoid v , implying G − v has a subdivision of Kk+2. This is a
contradiction.
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k-Trees

Proof.

(⇐) Let G be maximal k-degenerate and not a k-tree. Since G is
constructed beginning with a k-tree, for a given construction
sequence there is a �rst vertex in the sequence that makes G not a
k-tree. Let v be this vertex, and H be the maximal k-degenerate
subgraph induced by the vertices of the construction sequence up
to v . Then n (H)≥ k +3, dH (v) = k , v has nonadjacent neighbors
u and w , and H−v is a k-tree. Now there is a sequence of at least
two k +1-cliques starting with one containing u and ending with
one containing w , such that each pair of consecutive k +1-cliques
in the sequence overlap on a k-clique. Then two of these cliques
and a path through v produces a subdivision of Kk+2.
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k-Trees

Recall that every 3-core contains a subdivision of K4.

Corollary

[Dirac 1964] If G has m ≥ 2n−2, then G contains a subdivision of
K4, and the graphs of size 2n−3 that fail to contain a subdivision
of K4 are exactly the 2-trees.

Proof.

Let G have m ≥ 2n−2 = (3−1)n−
(
3
2

)
+1. Hence G contains a

3-core. Then it contains a subdivision of K4. If a graph of size
2n−3 has no 3-core, it is maximal 2-degenerate. By the previous
theorem, exactly the 2-trees do not contain a subdivision of K4.

[Mader 1998] If m ≥ 3n−5, G contains a subdivision of K5.
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Coloring k-degenerate Graphs

The chromatic number of a maximal k-degenerate graph is
easily determined.

Theorem

If G is maximal k-degenerate with n ≥ k +1, then χ (G ) = k +1.

Proof.

G contains a k +1-clique, and and has maximum core number k .
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Coloring k-degenerate Graphs

Edge coloring is similar to vertex coloring, except that the
edges are colored.

Clearly the edge chromatic number, χ1 (G ), is at least as large
as the maximum degree.

Vizing showed that it is never more than 4(G )+1.

A graph is called class one if χ (G ) =4(G ), and class two if
χ (G ) =4(G )+1.

Allan Bickle The k-Cores of a Graph



Coloring k-degenerate Graphs

Theorem

[Goufei 2003] Every k-degenerate graph with 4≥ 2k is class one.

Corollary

If G is maximal k-degenerate with n ≥
(
k+2
2

)
, then G is class one.

A graph G is overfull if n is odd and m > n−1
2
4(G ). It is

easily seen that an overfull graph is class two.

This result and the preceding theorem imply that the only
maximal 2-degenerate graphs of class two are K3 and K4 with
a subdivided edge.

Conjecture

A maximal k-degenerate graph is class two ⇐⇒ it is overfull.
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Coloring k-degenerate Graphs

De�nition

The edge-arboricity, or simply arboricity a1 (G ) is the minimum
number of forests into which G can be decomposed.

If G decomposes into k forests, then m (G )≤ k · (n (G )−1).
Hence this condition applies to any subgraph of G .

Theorem

[Nash-Williams 1964] For every nonempty graph G,

a1 (G ) = max
H⊆G

⌈
m(H)
n(H)−1

⌉
, where the maximum is taken over all

induced subgraphs of G .
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Coloring k-degenerate Graphs

This is a di�cult theorem to prove, though a relatively short
proof appears in [Chen, Matsumoto, Wang, Zhang, and Zhang
1994].
This theorem requires determining a maximum over all induced
subgraphs of a graph, which is impractical for all but the
smallest graphs.

De�nition

The a-density of a nontrivial graph G is m

n−1 .

The arboricity of maximal k-degenerate graphs was determined
in [Patil 1984]. We provide a much shorter proof.
Note that it follows immediately from an earlier theorem that
if G is maximal k-degenerate, then a1 (G )≤ k . The arboricity
may be smaller if n is small relative to k .
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Coloring k-degenerate Graphs
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Coloring k-degenerate Graphs

Theorem

Let G be maximal k-degenerate. Then a1 (G ) =
⌈
k−

(
k

2

)
1

n−1

⌉
.

Proof.

A maximal k-degenerate graph of order n has size
m = k ·n−

(
k+1
2

)
. Then its a-density is

m

n−1 =
[
k ·n−

(
k+1
2

)]
1

n−1 = k +
[
k−

(
k+1
2

)]
1

n−1 = k−
(
k

2

)
1

n−1 .

Note that this function is monotone with respect to n. Now any
subgraph of a k-degenerate graph is also k-degenerate, so this
implies that any proper subgraph of G has smaller a-density. Then

by Nash-Williams' theorem, a1 (G ) =
⌈
k−

(
k

2

)
1

n−1

⌉
.
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Ramsey Core Numbers

De�nition

Given positive integers t1, t2, . . . , tk , the classical Ramsey number
r (t1, . . . , tk) is the smallest integer n such that for any
decomposition of Kn into k factors, for some i , the i th factor has a
ti -clique.

This problem can be modi�ed to require the existence of other
classes of graphs.

Since classical Ramsey numbers are de�ned, such
modi�cations are also de�ned, since every �nite graph is a
subgraph of some clique.
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Ramsey Core Numbers

De�nition

Given nonnegative integers t1, t2, . . . , tk , the Ramsey core number
rc (t1, t2, . . . , tk) is the smallest n such that for all edge colorings of
Kn with k colors, there exists an index i such that the subgraph
induced by the i th color, Hi , has a ti -core.

Theorem

1. rc (t1, t2, . . . , tk)≤ r (t1 +1, . . . , tk +1), the classical
multidimensional Ramsey number.
2. For any permutation σ of [k],
rc (t1, t2, . . . , tk) = rc

(
tσ(1), tσ(2), . . . , tσ(k)

)
. Thus we need only

consider nondecreasing orderings of the numbers.
3. rc (0, t2, . . . , tk) = 1
4. rc (1, t2, . . . , tk) = rc (t2, . . . , tk).
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Ramsey Core Numbers

Theorem

For k dimensions, rc (2,2, . . . ,2) = 2k +1.

Proof.

It is well known that the complete graph K2k can be decomposed
into k spanning paths, each of which has no 2-core. Thus
rc (2,2, . . . ,2)≥ 2k +1. K2k+1 has size

(
2k+1
2

)
= k (2k +1), so if it

decomposes into k graphs, one of them has at least 2k +1 edges,
and hence contains a cycle. Thus rc (2,2, . . . ,2) = 2k +1.
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Ramsey Core Numbers

De�nition

The multidimensional upper bound for the Ramsey core number
rc (t1, t2, . . . , tk) is the function B (t1, t2, . . . , tk), where T = ∑ ti and

B (t1, .., tk) =

⌈
1

2
−k +T +

√
T 2−∑ t2

i
+(2−2k)T +k2−k +

9

4

⌉

Theorem

[The Upper Bound] rc (t1, t2, . . . , tk)≤ B (t1, . . . , tk).
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Ramsey Core Numbers

Proof.

The size of a maximal k-core-free graph of order n is (k−1)n−
(
k

2

)
.

Now by the Pigeonhole Principle, some Hi has a ti -core when(
n

2

)
≥

k

∑
i=1

(
(ti −1)n−

(
ti
2

))
+1.

This leads to

n2−n ≥ 2n
k

∑
i=1

(ti −1)−
k

∑
i=1

(
t2i − ti

)
+2.

Thus we obtain a quadratic inequality n2−bn+ c ≥ 0 with
b = 1+2∑ ti −2k and c = ∑

(
t2
i
− ti
)
−2.
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Proof.

By the quadratic formula, n ≥ 1
2

(
b+
√
b2−4c

)
and

b2−4c =
(
1+4T −4k +4T 2−8kT +4k2

)
−
(
4∑ t2i −4T −8

)
= 4

(
T 2−∑ t2i +(2−2k)T +k2−k +

9

4

)
Thus

n ≥

⌈
1

2
−k +T +

√
T 2−∑ t2

i
+(2−2k)T +k2−k +

9

4

⌉
.

Now rc (t1, . . . , tk)≤min{n |n ≥ B (t1, . . . , tk)}= B (t1, . . . , tk).
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Thus to show that a Ramsey core number achieves the upper
bound, we must �nd a decomposition of the complete graph of
order B (t1, . . . , tk)−1 for which none of the factors contain
the stated cores. For example, this decomposition shows that
rc (3,3) = 8.
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When �rst studying this problem in late 2008 I made the
following conjecture, initially restricted to two dimensions.

Conjecture

The upper bound is exact. That is, rc (t1, t2, . . . , tk) = B (t1, . . . , tk).

To prove this, we state the following theorem due to R. Klien
and J. Schonheim from 1992.
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Theorem

Any complete graph with order n < B (t1, . . . , tk) has a
decomposition into k subgraphs with degeneracies at most t1−1,
... , tk −1.

The proof of this theorem is long and di�cult. It uses a
complicated algorithm to construct a decomposition of a
complete graph with order satisfying the inequality into k
subgraphs given a decomposition of a smaller complete graph
into k−1 subgraphs without the �rst k−1 cores, a copy of
Ktk

, and some extra vertices. Thus the proof that the
algorithm works uses induction on the number of subgraphs.
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Theorem

We have rc (t1, t2, . . . , tk) = B (t1, . . . , tk).

Proof.

We know that B (t1, . . . , tk) is an upper bound. By the previous
theorem, there exists a decomposition of the complete graph of
order B (t1, . . . , tk)−1 such that subgraph Hi has degeneracy ti −1,
and hence has no ti -core. Thus rc (t1, t2, . . . , tk) > B (t1, . . . , tk)−1,
so rc (t1, t2, . . . , tk) = B (t1, . . . , tk).
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Since the exact answer depends on a complicated
construction, some simpler constructions remain of interest.

Theorem

[The Lower Bound] We have
rc (t1 +1, t2, . . . , tk)≥ rc (t1, . . . , tk)+1.

Proof.

Let n = rc (t1 +1, t2, . . . , tk). Then there exists a decomposition of
Kn−1 with each factor having no ti -core for all i . Let H = G + v .
Consider the decomposition of Kn formed from the previous
decomposition by joining a vertex to the �rst factor. Then the �rst
factor has no t1 +1-core. Thus
rc (t1 +1, t2, . . . , tk)≥ rc (t1, . . . , tk)+1.
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Theorem

Let t =
(
r

2

)
+q, 1≤ q ≤ r . Then

rc (2, t) =
(
r

2

)
+ r +q+1 = t + r +1 = B (2, t) .

Proof.

We �rst show that the Upper Bound for rc (2, t) can be expressed
as a piecewise linear function with each piece having slope one and
breaks at the triangular numbers. Let t =

(
r

2

)
. Let

B ′ (s, t) = s + t− 3

2
+

√
2(s−1)(t−1)+

9

4
.

Then B (s, t) = dB ′ (s, t)e. Now B ′ (2, t) =

2+ t− 3

2
+

√
2 ·1(t−1)+

9

4
= t +

1

2
+

√
2
r (r −1)

2
+

1

4
= t + r
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Proof.

Now B ′ (2, t +1) > t + r +1, so B (2, t +1)≥ t + r +2. Then
B (2, t +q)≥ t + r +1+q for q ≥ 1 by the Lower Bound. Now

B ′ (2, t + r) = B ′
(
2,
(
r+1
2

))
= t + r + r +1, an integer. Thus

B (2, t + r) = t + r + r +1, so B (2, t +q)≤ t + r +1+q for
1≤ q ≤ r by the Lower Bound. Thus B (2, t +q) = t + r +1+q,
1≤ q ≤ r , so rc (2, t)≤ t + r +1 for t =

(
r

2

)
+q.
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Proof.

We next show that the upper bound is attained with an explicit
construction. Let T be a caterpillar whose spine with length r is

r − r − (r −1)− (r −2)− . . .−4−3−2,

where a number is the degree of a vertex and end-vertices are not
shown. Now T has

[(r −1)+(r −2)+(r −3)+ . . .+2+1]+1 =

(
r

2

)
+1

end-vertices, so it has order n =
(
r

2

)
+ r +1. The degrees of

corresponding vertices in T and T must add up to n−1 =
(
r

2

)
+ r .
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Proof.

Then the degrees of corresponding vertices in T are

(
r

2

)
,

(
r

2

)
,

(
r

2

)
+1,

(
r

2

)
+2, . . . ,

(
r

2

)
+ r −3,

(
r

2

)
+ r −2.

Take the
((

r

2

)
+1
)
-core of T . The �rst two vertices will be deleted

by the k-core algorithm. The pth vertex will be deleted because it
has degree

(
r

2

)
+p−2 and is adjacent to the �rst p−2 vertices,

which were already deleted. Thus all the spine vertices will be
deleted, leaving

(
r

2

)
+1 vertices, which must also be deleted. Thus

T has no
((

r

2

)
+1
)
-core, and T has no 2-core. Thus

rc
(
2,
(
r

2

)
+1
)
≥
(
r

2

)
+ r +1+1. Thus

rc
(
2,
(
r

2

)
+q
)
≥
(
r

2

)
+ r +1+q by the Lower Bound.

Thus rc (2, t) = t + r +1 for t =
(
r

2

)
+q, 1≤ q ≤ r .
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s\t 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12

2 3 5 6 8 9 10 12 13 14 15 17

3 4 6 8 10 11 13 14 15 17 18 19

4 5 8 10 11 13 15 16 18 19 20 22

5 6 9 11 13 15 16 18 20 21 23 24

6 7 10 13 15 16 18 20 21 23 25 26

7 8 12 14 16 18 20 22 23 25 26 28

Values of some 2-dimensional Ramsey core numbers.
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Thank you!
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