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Counting Graphs

One common problem in graph theory in counting the graphs
in a given class.

There are two variations of this problem.

A labeled graph has distinct labels (say 1, ... , n) on its
vertices.

Unlabeled graphs do not. (They may be considered as
isomorphism classes of labeled graphs.)

Counting labeled graphs is usually easier since the isomorphism
classes may have di�erent sizes.
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Counting Graphs

A graph with order n has
(n
2

)
possible edges.

There are 2(
n
2) labeled graphs with order n.

There is no known closed formula for the number of unlabeled
graphs with order n.

Generating functions can be used to show that the formula is

asymptotic to 2(
n
2)

n! .

There are 11 unlabeled graphs of order 4.
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k-Paths

Paths are a well-known class of graphs. They can be
generalized.

De�nition

A k-path graph G is an alternating sequence of distinct k- and
k+1-cliques e0, t1,e1, t2, ..., tp,ep, starting and ending with a
k-clique and such that ti contains exactly two k-cliques ei−1 and ei .

Note that k-paths are also known a linear k-trees [2017]. They
are closely related to pathwidth [1999]; in particular, they are
the maximal graphs with proper pathwidth k .
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k-Paths

There is a simple characterization of k-paths.

De�nition

A clique Kk of order k ≥ 1 is a k-tree, and any k-tree of order
n+1 can be obtained from a k-tree of order n ≥ k by adding a new
vertex adjacent to all vertices of a clique of order k , which is called
the root of the newly added vertex.

Theorem

(MJP [2006]) Let G be a k-tree with n > k+1 vertices. Then G is

a k-path graph if and only if G has exactly two vertices of degree k .

We consider the number of unlabeled 2-paths of order n. The
�rst few values (n ≥ 3) of the sequence are 1, 1, 1, 2, 3, 6, 10,
...
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2-Paths

Theorem

There are 2n−6+2b
n−6
2 c 2-paths of order n ≥ 5.

Proof.

A 2-path can be constructed from K4− e with 2-leaves u and v by
maintaining u as a 2-leaf and adding a new 2-leaf adjacent to v
and one of its two neighbors. Then each time a 2-leaf is added,
there are two choices, which we may call right (R) and left (L)
since 2-paths are planar. Note that if the �rst choice is L, we could
�ip over the graph to make it R. Thus construting each 2-path of
order n yields a string of Ls and Rs of length n−4 beginning with
R. There are 2n−5 such strings. However, a 2-path may correspond
to more than one string, since it can be constructed from either
2-leaf. Constructing from the other 2-leaf reverses the string, since
L or R in the string corresponds to a copy of P4+K1 in the 2-path.
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2-Paths

Proof.

The 2-path may have a nontrivial automorphism. If it can be
rotated onto itself, the string ends with L. Then contructing from
the other end yields the same string, since each L and R are
interchanged (�ippped). If it can be re�ected onto itself, the string
ends with R. Then contructing from the other end yields the same
string after �ipping so that it begins with R.
In each case, the �rst half of the string determines the second half,
and if n is odd, the middle term is the same. Each case yields
1
22
b n−42 c strings, so there are 2b

n−4
2 c total strings with symmetry.

These strings have a bijection with symmetric 2-paths. Otherwise,
each 2-path corresponds to two strings. Thus the number of
2-paths of order n is

2b
n−4
2 c+ 1

2

(
2n−5−2b

n−4
2 c
)
= 2n−6+2b

n−6
2 c.
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Caterpillars

A caterpillar is a tree such that the deletion of all its leaves
results in a path.

Harary and Schwenk [1973] showed that there are

2n−4+2b
n−4
2 c caterpillars of order n ≥ 3.

This suggests that there is a connection between 2-paths and
caterpillars.
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Caterpillars

There are several useful characterizations of caterpillars.

(Harary/Schwenk [1971]) A tree is a caterpillar if and only if it
does not contain the tree shown below left.

(Harary/Schwenk [1972]) A tree is a caterpillar if and only if it
can be drawn so that its vertices are on two parallel lines and
its edges are straight lines that don't cross (see above right).

Theorem

The number of 2-paths of order n equals the number of caterpillars

of order n−2.
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Caterpillars

Proof.

We show that there is a bijection between 2-paths of order n and
caterpillars of order n−2. Given a drawing of a caterpillar with
vertices on two parallel lines, add edges between consecutive
vertices on each parallel line. Add a vertex neighboring the two
leftmost vertices on the lines, and one neighboring the two
rightmost vertices. This uniquely produces a 2-path.
Consider constructing a 2-path from K4− e. As new vertices are
added, keep the 2-leaves on the exterior region, and put the other
vertices on two parallel lines (a former 2-leaf may be moved to the
appropriate line). Consider the graph T induced by the edges not
on the exterior region. Adding a new vertex to the 2-path adds one
pendant edge to T , so it is a tree. The drawing is a caterpillar.

↔
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Constructing k-Paths

The fact that 2-paths can be constructed with vertices on two
parallel lines suggests a generalization for k-paths.

A k-path can be constructed from Kk +K 2 with k-leaves u
and v by maintaining u as a k-leaf and adding a new k-leaf
adjacent to v and k−1 of its k neighbors. Label the k
neighbors of u 1 through k (in any way). Each time a k-leaf x
is added adjacent to (old) k-leaf w , label w with the label of
its neighbor that does not neighbor x .

De�ne a string of length n−k−2 with the labels added after
the �rst k .

Call this a construction string.
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Labeled k-Paths

Theorem

(BNS [2018]) The number of labeled k-paths of order n ≥ k+3 is

n! ·kn−k−2

2 ·k!
.

Proof.

There are kn−k−2 construction strings for k-paths of order n. There
are k! ways to label N (u) initially, so k! strings can be produced
this way. A given k-path may also be constructed starting at its
other leaf. Constructing from the other k-leaf reverses the string,
since each number in the string corresponds to a copy of P4+Kk−1
in the k-path. The n labels can be permuted in n! ways. Thus the
number of labeled k-paths of order n ≥ k+3 is as stated.
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Unlabeled k-Paths

What about unlabeled k-paths?

The k-path may have a nontrivial automorphism.

One possibility is that its end may be interchanged.

De�nition

A dominating vertex of a graph is a vertex adjacent to all other
vertices.

Another possibility is that it has multiple dominating vertices
that may be permuted. The numbers assigned to dominating
vertices will not appear in the string.

Thus we must count strings of length n−k−2 using at most
k numbers which are equivalent under reversal and
permutation (reversal symmetry).

We split the strings into those that have reversal symmetry
and those that do not.
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Unlabeled k-Paths

N =

∣∣∣∣ k−paths with
reversal symmetry

∣∣∣∣+ ∣∣∣∣ k−paths without
reversal symmetry

∣∣∣∣
= ∑

i

∣∣∣∣∣∣
k−paths with

reversal symmetry
using exactly i numbers

∣∣∣∣∣∣+∑
i

∣∣∣∣∣∣
k−paths without
reversal symmetry

using exactly i numbers

∣∣∣∣∣∣

= ∑
i

∣∣∣∣∣∣∣∣
strings with

reversal symmetry
using exactly i numbers

∣∣∣∣∣∣∣∣
i! +∑

i

∣∣∣∣∣∣∣∣
strings without

reversal symmetry
using exactly i numbers

∣∣∣∣∣∣∣∣
2(i!)

= ∑
k
i=1

a∗(i ,x)
i! +∑

k
i=1

b(i ,x)−a∗(i ,x)
2(i!)

Let the number of strings of length x = n−k−2 using exactly
i numbers that have reversal symmetry be a∗ (i ,x).

Let the total number of strings of length x = n−k−2 using
exactly i speci�ed numbers of k numbers be b (i ,x).
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Counting Onto Functions

Let the total number of strings of length x = n−k−2 using
exactly i speci�ed numbers of k numbers be b (i ,x).

Equivalently, this is the number of onto functions from
{1, ...,k} to {1, ..., i}.
There is a well-known formula for this, proved using
Inclusion-Exclusion (Rosen [2011] p.561), showing

b (i ,x) =
i

∑
j=1

(−1)i−j
(
i

j

)
jx .
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Unlabeled k-Paths

The number of strings with reversal symmetry depends on
whether x = n−k−2 is even or odd.

Let the number of strings of length x = n−k−2 using exactly
i numbers that have reversal symmetry be a (i ,x) for n−k
even, and a′ (i ,x) for n−k odd. Certainly
a (1,x) = a′ (1,x) = 1.

A string with reversal symmetry can have its numbers
permuted to produce the original string.

Such a permutation must be an involution.
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Involutions

A permutation that is self-inverse is called an involution.

It must have cycles of length one or two only.

We will need the sequence s (n) of involution numbers. This
sequence (OEIS A000085) begins 1, 2, 4, 10, 26, 76, 232, 764,
2620, ...

Suppose there are r 2-cycles in an involution. Pick a number
and match it to its image in 2r −1 ways. The next number
can be matched in 2r −3 ways.

Divide by 2r to eliminate the order of these choices.

We choose 2r of n numbers and sum over all values of r . Thus

s (n) =
bn/2c

∑
r=0

(
n

2r

)
(2r −1)!! =

bn/2c

∑
r=0

n!

2r (n−2r)!r !
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Unlabeled k-Paths

Assume n−k is even, so the length of the string is even.

To �nd how many strings with reversal symmetry use exactly i
numbers, we �nd how many use at most i numbers and
subtract out those that use fewer than i .

There are id
x
2e choices for the �rst half of the string, and s (i)

involutions produce the second half of the string.

Thus there are s (i) · id
x
2e strings with reversal symmetry that

use at most i numbers.
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Unlabeled k-Paths

There are
(i
j

)
choices of j numbers that appear in a string

using exactly j of i numbers.

The number of involutions of the remaining j− i numbers is
s (j− i), so each string using exactly j of i numbers will appear(i
j

)
a (j ,x)s (i − j) times in the s (i) · id

x
2e strings.

Thus we have the recursive formula
a (i ,x) = s (i) · id

x
2e −∑

i−1
j=1

(i
j

)
a (j ,x)s (i − j).
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Unlabeled k-Paths

i a (i ,x)

1 1

2 2 ·2d
x
2e −2

3 4 ·3d
x
2e −6 ·2d

x
2e

4 10 ·4d
x
2e −16 ·3d

x
2e+8

5 26 ·5d
x
2e −50 ·4d

x
2e+40 ·2d

x
2e −10

6 76 ·6d
x
2e −156 ·5d

x
2e+160 ·3d

x
2e −60 ·2d

x
2e −36

7 232 ·7d
x
2e −532 ·6d

x
2e+700 ·4d

x
2e −280 ·3d

x
2e −252 ·2d

x
2e+112
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Unlabeled k-Paths

If n−k is odd, the length of the string is odd.

As before, to �nd how many strings with reversal symmetry
use exactly i numbers, we �nd how many use at most i
numbers and subtract out those that use fewer than i .

Now the middle element must be �xed in any involution, so
s (i −1) involutions produce the second half of the string.

Thus there are s (i −1) · id
x
2e strings with reversal symmetry

that use at most i numbers.

As before, we have the recursive formula
a′ (i ,x) = s (i −1) · id

x
2e −∑

i−1
j=1

(i
j

)
a′ (j ,x)s (i − j).
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Unlabeled k-Paths

i a′ (i ,x)

1 1

2 2d
x
2e −2

3 2 ·3d
x
2e −3 ·2d

x
2e

4 4 ·4d
x
2e −8 ·3d

x
2e+8

5 10 ·5d
x
2e −20 ·4d

x
2e+20 ·2d

x
2e −10

6 26 ·6d
x
2e −60 ·5d

x
2e+80 ·3d

x
2e −30 ·2d

x
2e −36

7 76 ·7d
x
2e −182 ·6d

x
2e+280 ·4d

x
2e −140 ·3d

x
2e −126 ·2d

x
2e+112
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Unlabeled k-Paths

Thus the number of strings without reversal symmetry is
b (i ,x)−a (i ,x) or b (i ,x)−a′ (i ,x), depending on parity.

Thus the number of k-paths with x = n−k−2 even is

k

∑
i=1

a (i ,x)

i !
+

k

∑
i=1

b (i ,x)−a (i ,x)

2(i !)
=

k

∑
i=1

b (i ,x)+a (i ,x)

2(i !)
.

The number of k-paths with x = n−k−2 odd is

k

∑
i=1

a′ (i ,x)

i !
+

k

∑
i=1

b (i ,x)−a′ (i ,x)

2(i !)
=

k

∑
i=1

b (i ,x)+a′ (i ,x)

2(i !)
.
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Unlabeled k-Paths

Theorem

Let a (1,x) = a′ (1,x) = 1, and

a (i ,x) = s (i) · id
x
2e −∑

i−1
j=1

(i
j

)
a (j ,x)s (i − j)

a′ (i ,x) = s (i −1) · id
x
2e −∑

i−1
j=1

(i
j

)
a′ (j ,x)s (i − j)

b (i ,x) = ∑
i
j=1 (−1)

i−j (i
j

)
jx .

Then the number of k-paths of order n ≥ k+3 is

k

∑
i=1

b (i ,n−k−2)+a (i ,n−k−2)

2(i !)
n−k even

k

∑
i=1

b (i ,n−k−2)+a′ (i ,n−k−2)

2(i !)
n−k odd
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Unlabeled k-Paths

The problem of enumerating strings that are considered
equivalent under reversal and permutation was previously
studied by Nester [1999] using Polya enumeration.

This produced a method for calculating small values of these
sequences, but did not produce closed formulas for them.

For small values of k , here are simpli�ed formulas for the
number N (k ,x) of k-paths of order x = n−k−2.

N (2,x) =

{
1
42

x + 1
22
d x2e neven

1
42

x + 1
42
d x2e nodd

= 2n−6+2b
n−6
2 c

N (3,x) =

{
1
123

x + 1
63
d x2e+ 1

4 neven
1
123

x + 1
33
d x2e+ 1

4 nodd

N (4,x) =

{
1
484

x + 5
244
d x2e+ 1

82
x + 1

3 neven
1
484

x + 1
124
d x2e+ 1

82
x + 1

3 nodd
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Unlabeled k-Paths

For small values of k , here are simpli�ed formulas for the
number of k-paths of order x = n−k−2.

N (5,x) =

{
5x

240 +
3x

24 +
2x

12 +
5d

x
2
e

24 + 2d
x
2
e

12 + 5
16 neven

5x

240 +
3x

24 +
2x

12 +
13·5d

x
2
e

120 + 2d
x
2
e

6 + 5
16 nodd

N (6,x) ={
6x

1440 +
4x

96 +
3x

36 +
3·2x
32 + 19·6d

x
2
e

360 + 3d
x
2
e

9 + 2d
x
2
e

8 + 17
60 neven

6x

1440 +
4x

96 +
3x

36 +
3·2x
32 + 13·6d

x
2
e

720 + 3d
x
2
e

18 + 2d
x
2
e

16 + 17
60 nodd

N (7,x) ={
7x

10080 +
5x

480 +
4x

144 +
3x

32 +
11·2x
120 + 19·7d

x
2
e

2520 + 4d
x
2
e

36 + 3d
x
2
e

24 + 2d
x
2
e

20 + 85
288 neven

7x

10080 +
5x

480 +
4x

144 +
3x

32 +
11·2x
120 + 29·7d

x
2
e

1260 + 5·4d
x
2
e

72 + 3d
x
2
e

12 + 2d
x
2
e

10 + 85
288 nodd

In general, the dominant term is always 1
2(k!)k

n−k−2, and for

k ≥ 5, the next largest term is 1
4·(k−2)! (k−2)n−k−2.
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Unlabeled k-Paths

The following table lists the beginnings of the sequences,
which occur in OEIS up to k = 6.

k Sequence (n ≥ k+3) OEIS

2 1, 2, 3, 6, 10, 20, 36, 72, 136, 272, ... A005418

3 1, 2, 4, 10, 25, 70, 196, 574, 1681, 5002, ... A001998

4 1, 2, 4, 11, 31, 107, 379, 1451, 5611, 22187, ... A056323

5 1, 2, 4, 11, 32, 116, 455, 1993, 9134, 43580, ... A056324

6 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, ... A056325

7 1, 2, 4, 11, 32, 117, 468, 2151, 10722, 58071, ...

All k-paths with order k+3≤ n≤ 2k+1 have diameter 2, and
so have a dominating vertex. If there are N k-paths with order
2k+2, then there are N k+ r -paths with order 2k+2+ r ,
since they have at least r dominating vertices.
Thus the sequences in the table above approach a limiting
sequence of 1, 2, 4, 11, 32, 117, 468, 2152, 10743, ... which
appears to be A103293.
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Thank You!
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