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A Motivating Problem

Consider the following problem. An international round-robin sports
tournament is held between n teams. The games are split between
k locations in di�erent countries, which can host multiple games
simultanously. The teams can travel to di�erent locations to play,
but it is impractical for the fans to visit more than one location. In
this situation, it is reasonable to want teams that play at a given
location to play as many games there as possible so that local fans
can see them as much as possible. More precisely, we can compute
the minimum number of games played by the teams at that
location. We then wish to maximize the sum of these minimum
numbers over all the locations in the tournament.
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Nordhaus-Gaddum Class Theorems

One common way to study a graph parameter p (G ) is to
examine the sum p (G ) +p

(
G
)
and product p (G ) ·p

(
G
)
.

Nordhaus and Gaddum proved the following Theorem for
chromatic number in 1956.

Theorem

2
√
n ≤ χ (G ) + χ

(
G
)
≤ n+1

n ≤ χ (G ) ·χ
(
G
)
≤
(
n+1

2

)2

Finck [1968] showed that all of these bounds are sharp and
determined the extremal graphs.
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Nordhaus-Gaddum Class Theorems

Chartrand and Mitchem [1971] found similar bounds for other
graph parameters.

A theorem providing sharp upper and lower bounds for this
sum and product is known as a theorem of the
Nordhaus-Gaddum class.

A graph and its complement decompose a complete graph.
Hence a natural generalization of this problem is to consider
decompositions into more than two factors.

De�nition

A k-decomposition of a graph G is a decomposition of G into k
subgraphs.
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Nordhaus-Gaddum Class Theorems

The sum upper bound has attracted the most attention.

De�nition

For a graph parameter p, let p (k ;G ) denote the maximum of

∑
k
i=1 p (Gi ) over all k-decompositions of G .

Furedi, Kostochka, Stiebitz, Skrekovski, and West [2005]
explored this upper bound for several di�erent parameters.

We will tend to describe a k-decomposition as {H1, ...,Hk},
where each Hi is a p-critical subgraph.
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k-Cores

De�nition

The k-core of a graph G is the maximal induced subgraph H ⊆ G
such that δ (H)≥ k .

The k-core was introduced by Steven B. Seidman in a 1983
paper entitled Network structure and minimum degree.

It is immediate that the k-core is well-de�ned and that the
cores are nested.
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k-Cores

G is its own 0-core.
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k-Cores

The 1-core of G .
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k-Cores

The 2-core of G .
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k-Cores

The 3-core of G is 2K4.
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k-Cores

De�nition

The core number of a vertex, C (v), is the largest value for k such
that v ∈ Ck (G ).
The maximum core number of a graph, Ĉ (G ), is the maximum of
the core numbers of the vertices of G .

It is immediate that δ (G )≤ Ĉ (G )≤4(G ).

De�nition

If the maximum core number and minimum degree of G are equal,
Ĉ (G ) = δ (G ), we say G is k-monocore.

Translating our motivating problem into graph theory terms,
we wish to �nd δ (k ;Kn) over all values of k and n. We will
investigate Ĉ (k ;Kn), which may be the same thing.
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k-Cores

We need a way to determine the k-core of a graph.

The k-core algorithm (sketch)

Input: graph G with adjacency matrix A, integer k , degree array D.
Recursion: Delete all vertices with degree less than k from G .
(That is, make a list of such vertices, zero out their degrees, and
decrement the degrees of their neighbors.)
Result: The vertices that have not been deleted induce the k-core.
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k-Cores

Theorem

Applying the k-core algorithm to graph G yields the k-core of G ,
provided it exists.

Theorem

[Batagelj/Zaversnik 2003] The k-core algorithm has e�ciency
O (m). (That is, it is linear on the size m.)
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k-Cores

Theorem

Applying the k-core algorithm to graph G yields the k-core of G ,
provided it exists.

Theorem

[Batagelj/Zaversnik 2003] The k-core algorithm has e�ciency
O (m). (That is, it is linear on the size m.)
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Maximum Core Number and 2-Decompositions

Theorem

a. We have Ĉ (G ) + Ĉ
(
G
)
≤ n−1.

b. The graphs for which Ĉ (G ) + Ĉ
(
G
)

= n−1 are exactly the
graphs constructed by starting with a regular graph and iterating
the following operation.
Given k = Ĉ (G ), H a k-monocore subgraph of G, add a vertex
adjacent to at least k +1 vertices of H, and all vertices of degree k
in H (or similarly for G).

Proof.

a. Let p = Ĉ (G ) and suppose G has an n−p-core. These cores
use at least (p+1) + (n−p+1) = n+2 vertices, and hence share a
common vertex v . But then dG (v) +dG (v)≥ p+ (n−p) = n, a
contradiction.
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Maximum Core Number and 2-Decompositions

Proof.

b. (⇐) If G is regular with k = Ĉ (G ), then G is n−k−1-regular,
so Ĉ (G ) + Ĉ

(
G
)

= n−1. If a vertex v is added as in the
operation, producing a graph H, a k +1-core is produced, so
Ĉ (H) + Ĉ

(
H
)

= (n+1)−1.

(⇒) Suppose that for a graph G , Ĉ (G ) + Ĉ
(
G
)

= n−1. If G and

G are both monocore, then they must be regular. If G has a vertex
v that is not contained in the maximum cores of both G and G ,
then Ĉ (G − v) + Ĉ

(
G − v

)
= (n−1)−1. Then v is contained in

the maximum core of one of them, say G . Further, given
k = Ĉ (G ), v is contained in a k-monocore subgraph H of G , and
H− v must be k−1-monocore. Then v must have been adjacent
to all vertices of degree k−1 in H− v . Thus G can be constructed
as described using the operation.
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Maximum Core Number and 2-Decompositions

Corollary

[Nordhaus-Gaddum] We have χ (G ) + χ
(
G
)
≤ n+1.

Proof.

We have
χ (G ) + χ

(
G
)
≤ 1+ Ĉ (G ) +1+ Ĉ

(
G
)
≤ n−1+2 = n+1.
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Maximum Core Number

This theorem says that in any extremal 2-decomposition into
spanning factors, they must be regular. This generalizes to
k-decompositions.

Corollary

Let D be a k-decomposition of Kn into factors that are critical with

respect to a maximum core number. Then ∑D

(
Ĉ (Gi )

)
≤ n−1

with equality exactly for decompositions into k spanning regular
graphs.

Proof.

Given vertex v , we have ∑D

(
Ĉ (Gi )

)
≤ ∑dGi

(v)≤ n−1. Equality

holds exactly when every factor is regular.
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The Two Factor Theorem

Next we consider k-decompositions with the restriction that
each vertex is contained in exactly two factors. Consider the
following construction.

Algorithm

Let r1, ..., rk be nonnegative integers at most one of which is odd.
Let Gij , 1≤ i < j ≤ k be an ri -regular graph of order ri + rj +1, and
let Gji = G ij . Let Gi = ⊕

j ,j 6=i
Gji . Let Sk be the set of all

k-decompositions of the form {G1, ...,Gk} constructed in this
fashion.
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The Two Factor Theorem

Theorem

[Two Factor Theorem] A k-decomposition with order n > 1 and

every vertex in exactly two factors has ∑D

(
Ĉ (Gi )

)
≤
(
2k−3
k−1

)
n− k

2
,

and equality holds exactly for those decompositons in the set Sk .

Proof.

Since each vertex is contained in exactly two of the k factors, so we
can partition them into

(
k
2

)
distinct classes. Let

Hij = V (Gi )∩V (Gj) and let nij = |Hij | for i 6= j , nii = 0. Hence
n = ∑i ,j nij . For v ∈ Hij , we have

Ĉ (Gi )≤ dGi
(v)≤ d

Gi [Hij ] (v) + ∑
k
t=1 nit . Sum for each of the two

factors and each of the
(
k
2

)
classes. Then (k−1)∑

k
i=1 Ĉ (Gi )≤

2(k−2)∑i ,j nij + ∑i ,j ,i 6=j (nij −1) = (2k−3)n−
(
k
2

)
, so

∑
k
i=1 Ĉ (Gi )≤

(
2k−3
k−1

)
n− k

2
.
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The Two Factor Theorem

Proof.

(⇒) If this bound is an equality, then all k of the factors must be
regular. Let rij = d

Gi [Hij ] (v) for v ∈ Gi [Hij ]. Also, all edges between

two classes sharing a common factor must be in that factor, so it is
a join of k−1 graphs. A join of graphs is regular only when they
are all regular. Now since Gi is regular, its complement must also
be regular. But this implies that all the constants rji , j 6= i are
equal. Let ri be this common value. Then nij = ri + rj +1, so

n = (k−1)∑ ri +
(
k
2

)
. This implies that at most one of ri and rj is

odd, so at most one of all the ri 's is odd.
(⇐) Let Gi be a factor of a decomposition D constructed using the
algorithm. It is easily seen that Gi is regular of degree(
(k−3) ri + (k−2) + ∑j rj

)
. Summing over all the factors, we �nd

that ∑D

(
Ĉ (Gi )

)
=
(
2k−3
k−1

)
n− k

2
.
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Maximum Core Number and 3-Decompositions

Now consider 3-decompositions. The formula in the following
theorem was proven by Furedi et al.

Theorem

We have Ĉ (3;Kn) =
⌊
3
2

(n−1)
⌋
, and the extremal decompositions

that avchieve ∑
3
i=1 Ĉ (Gi ) = 3

2
(n−1) all consist of three

n−1
2
-regular graphs. For n = 1, {K1,K1,K1} is the only extremal

3-decomposition, and for odd order n > 1 they are exactly those in
the set S3.

Proof.

Let G1, G2, and G3 be the three factors of an extremal
decomposition for Ĉ (3;Kn). It is obvious that {K1,K1,K1} is the
only possibility for n = 1, so let n > 1. The previous theorem shows
that ∑

3
i=1 Ĉ (Gi )≤ 3

2
(n−1).
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Maximum Core Number and 3-Decompositions

Proof.

Now any vertex can be contained in at most two of the three
factors, since its degrees in the three graphs sum to at most n−1.
Now adding a vertex with adjacencies so that it is contained in
exactly one of the three factors increases n by one and ∑

3
i=1 Ĉ (Gi )

by at most one, so this cannot violate the bound. Thus deleting a
vertex of an extremal decomposition contained in only one of the
three factors would decrease n by one and ∑

3
i=1 Ĉ (Gi ) by at most

one. For n odd, this is a contradiction and for n even it can occur
only when it is the only such vertex.
If there are only two distinct classes, then add a vertex joined to all
the vertices of the two disjoint factors. This increases n by one and

∑
3
i=1 Ĉ (Gi ) by two. Hence if the new decomposition satis�es the

bound, so does the original, and if the orginal decomposition
attains the bound, then n must be even.
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Maximum Core Number and 3-Decompositions

Proof.

Thus by the Two Factor Theorem, those decompositions with

∑
3
i=1 Ĉ (Gi ) = 3

2
(n−1) are exactly those in S3. Further, by the

proof of this theorem the factors of such a decomposition are all
1+ ∑ rj -regular. Now 2(r1 + r2 + r3) = ∑(nij −1) = n−3, so

∑j rj = n−3
2
. Thus the factors are all n−1

2
-regular.

Finally note that joining a vertex to all vertices of one factor of an
extremal decomposition of odd order attains the bound for even
order, so Ĉ (3;Kn) =

⌊
3
2

(n−1)
⌋
for even orders as well.

An extremal decomposition of even order can be formed from
one of odd order by either joining a vertex to one of the
factors or deleting a vertex contained in two factors. However,
the decomposition {K4,C4,C4} shows that not all extremal
decompositions of even order can be formed this way.
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Maximum Core Number and 4-Decompositions

Furedi et al also proved that Ĉ (4;Kn) =
⌊
5
3

(n−1)
⌋
. We use

their proof to show that all extremal decompositions with
n = 3r +1 > 1 can be constructed by the following algorithm.

Algorithm

Let n, r , a, b, c , and s be nonnegative integers with n = 3r +1,
a+b+ c = s−1 and a, b, c , even if s is odd. Let G1, G2, G3 be a,
b, c-regular graphs, respectively, of order s. Let G4, G5, G6 be
r − s-regular graphs of orders r −a, r −b, r − c , respectively. Let S
be the set of all decompositions of the form{
G1 +G4,G2 +G5,G3 +G6,G 3 +G 4 +G 6

}
.

Theorem

We have Ĉ (4;Kn) =
⌊
5
3

(n−1)
⌋
. For n = 1, {K1,K1,K1,K1} is the

only extremal 4-decomposition and the extremal decompositions of
order n = 3r +1 > 1 that avchieve ∑

4
i=1 Ĉ (Gi ) = 5

3
(n−1) are

exactly those in S.
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Maximum Core Number and 4-Decompositions

Proof.

It is obvious that {K1,K1,K1,K1} is the only possibility for n = 1,
so let n > 1. It is easily checked that the decompositions in S exist
and achieve the stated sum. Joining a vertex to one of the factors
achieves the stated bound for n = 3r +2, and deleting a vertex
contained in two of the factors achieves the bound for n = 3r .
As in the previous theorem, it is easily shown that no vertex is
contained in a single factor or all four factors. If each vertex is
contained in exactly two of the four factors, then the Two Factor
Theorem says that ∑

4
i=1 Ĉ (Gi )≤ 5

3
n−2. Hence this decomposition

is not extremal for n = 3r +1.
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Maximum Core Number and 4-Decompositions

Proof.

Consider an extremal decomposition with a vertex contained in
three of the factors. Call these factors 1, 2, and, 3 so that
Ĉ (G1)≤ Ĉ (G2)≤ Ĉ (G3). Let H123 = V (G1)∩V (G2)∩V (G3)
and Hi4 = V (Gi )∩V (G4). Then Ĉ (G1) + Ĉ (G2) + Ĉ (G3)≤ n−1,
so Ĉ (G1) + Ĉ (G2)≤ 2

3
(n−1). Now Ĉ (G3) + Ĉ (G4)≤ n−1, so

∑
4
i=1 Ĉ (Gi )≤ 5

3
(n−1), and Ĉ (4;Kn) =

⌊
5
3

(n−1)
⌋
.

If ∑
4
i=1 Ĉ (Gi ) = 5

3
(n−1), then Ĉ (G1) + Ĉ (G2) = 2

3
(n−1) and

Ĉ (G3) + Ĉ (G4) = n−1. The former implies that
Ĉ (G1) = Ĉ (G2) = Ĉ (G3) = 1

3
(n−1). The latter and this imply

that Ĉ (G4) = 2
3

(n−1) and each vertex in Gi ∩G4, i ∈ {1,2,3}, is
only adjacent to vertices in these two factors. Hence the vertices
partition into H123 and Hi4 = Gi ∩G4, i ∈ {1,2,3} whose orders we
call n123 and ni4, respectively. Furthermore, each of the factors is
regular.
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Maximum Core Number and 4-Decompositions

Proof.

Then H123 is decomposed into three regular spanning factors whose
degrees are even if n123 is odd, and the other sets are decomposed
into two regular spanning graphs. Let ri ,S = dGi [HS ] (v) for
v ∈ Gi [HS ]. Hence r1,123 +n14 = r1,14 +n123,
r2,123 +n24 = r2,24 +n123, and r3,123 +n34 = r3,34 +n123. Now since
G4 is regular, so is G 4. Thus r1,14 = r2,24 = r3,34, so each of the
factors is regular of the same degree. Let r = 1

3
(n−1) be this

common value, s = n123, so r − s = r1,14 = r2,24 = r3,34. Let
a = r1,123, b = r2,123, and c = r3,123, so a+b+ c = s−1,
n14 = r −a, n24 = r −b, and n34 = r − c . There are no parity
problems, so the extremal decomposition can be constructed by the
algorithm.
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Bounds for k=5 and 6

The values of Ĉ (k ;Kn) for k ∈ {2,3,4} satisfy
Ĉ (k ;Kn) =

⌊
2k−3
k−1 (n−1)

⌋
. In fact, Furedi et al produced a

simple construction to prove that Ĉ (k ;Kn)≥
⌊
2k−3
k−1 (n−1)

⌋
,

but this is not an equality for k ≥ 5.

Algorithm

Let S∗5 be the set of all decompositions that can be constructed as
follows. Take a decomposition D in S4 with the additional property
that the sum of some two of the four ri 's equals the sum of the
other two ri 's (e.g. r1 + r2 = r3 + r4). Let r be this common value.
Add the factor Kr+1,r+1 to the decomposition.
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Bounds for k=5 and 6

Theorem

We have Ĉ (5;Kn)≥
⌊
11
6
n−2

⌋
.

Proof.

This construction has ∑
5
i=1 Ĉ (Gi ) = 5

3
n−2+ n

6
= 11

6
n−2 for any

order that it can attain. The proof of the Two Factor Theorem
shows that a decomposition in Sk has order n = (k−1)∑ ri +

(
k
2

)
.

For k = 4, this gives n = 3∑ ri +6. To satisfy the property in the
construction, all the ri 's must be even, and it is obvious that any
nonnegative even r can be attained. Hence for each positive order
n = 6r there is a decomposition in S∗5 with this order. Successively
deleting �ve vertices contained in exactly two factors from such a
decomposition provides decompositions attaining the bound for the
other �ve classes of orders mod 6.
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Bounds for k=5 and 6

Conjecture

For n ≥ 2, Ĉ (5;Kn) =
⌊
11
6
n−2

⌋
.

The best known upper bound, due to Furedi et al says that
Ĉ (5;Kn)≤ 2n−3.

Algorithm

Let S∗6 be the set of all decompositions that can be constructed as
follows. Take a decomposition D in S4 with the additional property
that two pairs of two of the four ri 's are equal. (e.g. r1 = r2 and
r3 = r4). Let r be the sum of these two values. Add two copies of
the factor Kr+1,r+1 to the decomposition.

Theorem

For n ≥ 4, Ĉ (6;Kn)≥ 2n−2.
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Bounds for k=5 and 6

Proof.

This construction has ∑
6
i=1 Ĉ (Gi ) = 5

3
n−2+2

(
n
6

)
= 2n−2 for any

order that it can attain. The proof of the Two Factor Theorem
shows that a decomposition in Sk has order n = (k−1)∑ ri +

(
k
2

)
.

For k = 4, this gives n = 3∑ ri +6. To satisfy the property in the
construction, all the ri 's must be even, and any nonnegative even
r = 4s can be attained. Hence for each positive order n = 12s +6
there is a decomposition in S∗6 with this order. Successively deleting
vertices contained in exactly two factors from such a decomposition
provides decompositions attaining the bound when 4≤ n ≤ 6,
12≤ n ≤ 18, and n ≥ 20. Joining a vertex to each of the two
disjoint factors when n = 12s +6 works for n ∈ {7,19}. Now
{2 [K4] ,4 [C4]} works for n = 8 and {3 [K4] ,3 [K3,3]} works for
n = 10. Joining a vertex to disjoint factors in these last two works
for n ∈ {9,11}.
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Bounds for k=5 and 6

Conjecture

For n ≥ 4, Ĉ (6;Kn) = 2n−2.

The best known upper bound, due to Furedi et al says that
Ĉ (6;Kn)≤ 5

2
n− 7

2
.

The constructions that we have seen so far start with a small
decomposition and 'expand' it to a bigger one. In some cases,
this process can be generalized.
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Expanded Constructions

Theorem

Suppose there is a k-decomposition of Kn into regular subgraphs
and ∑

k
i=1 Ĉ (Gi ) = c (n−1). Then there are in�nitely many other

k-decompositions with order n′ and ∑
k
i=1 Ĉ (Gi ) = c (n′−1).

Proof.

Let r = n−1. Let D be a decomposition of Krt+1 into r t-regular
spanning factors, where t is even if r is even. Form a
k-decomposition D ′ with order n′ by replacing each vertex of Kn

with a copy of D so that if vertex v has degree di in Gi , then di of
the r factors are merged together. Finally, join the corresponding
factors in di�erent copies of D.
If the factor Gi has degree di in Kn, then the factor G ′i has degree
di (rt +1) +di t. Now since ∑

k
i=1 di = c (n−1) and n′ = n (rt +1),

∑
k
i=1 (di (rt +1) +di t) = (rt +1+ t)∑di = (rt +1+ t)c (n−1)

= c [n (rt +1)−1+ t (n−1− r)] = c (n′−1).
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Expanded Constructions

We now consider a number of decompositions that can be
expanded to in�nite families via the previous theorem.

Decompose Kn into k =
(
n
2

)
K2's. Then

∑
k
i=1 Ĉ (Gi ) =

(
n
2

)
= n

2
(n−1) = 1+

√
1+8k
4

(n−1). Thus this
sum can be achieved for in�nitely many orders whenever k is a
triangular number.

Decompose Kn into K3's, which can occur whenever n≡ 1 or 3
mod 6. Such a decomposition has k = 1

3

(
n
2

)
= n(n−1)

6
triangles,

so ∑
k
i=1 Ĉ (Gi ) = 2n(n−1)

6
= n

3
(n−1) = 1+

√
1+24k
6

(n−1).

In particular, consider k = 7. Let H be an r -regular graph of
order 3r +1. Let G = H +H +H. Then G is 7r +2-regular,
and 7 copies of G form a decomposition of order
n = 7(3r +1) = 21r +7, so n−1

3
= 7r +2. Then

∑
7
i=1 Ĉ (Gi ) = 7(7r +2) = 7

3
(n−1). This construction shows

that Ĉ (7;Kn)≥
⌊
7
3

(n−1)
⌋
for n = 7(3r +1).
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Expanded Constructions

Decompose Kn into K4's, which can occur whenever n ≡ 1 or
4 mod 12 [Hanani 1961]. Such a decomposition has

k = 1
6

(
n
2

)
= n(n−1)

12
K4's, so

∑
k
i=1 Ĉ (Gi ) = 3n(n−1)

12
= n

4
(n−1) = 1+

√
1+48k
8

(n−1).

Decompose Kn into K5's, which can occur whenever n ≡ 1 or
5 mod 20 [Hanani 1975]. Such a decomposition has

k = 1
10

(
n
2

)
= n(n−1)

20
K5's, so

∑
k
i=1 Ĉ (Gi ) = 4n(n−1)

20
= n

5
(n−1) = 1+

√
1+80k
10

(n−1).

Let n = p2 +p+1, where p is a prime power. Then there is a
projective plane with n points and n lines, which correspond to
vertices and factors of a decomposition. Then ∑

k
i=1 Ĉ (Gi ) =

kp = kp
k−1 (n−1) = p2+p+1

p+1
(n−1) =

(−1+
√
4k−3)k

2(k−1) (n−1).

Let k [G ] mean that factor G occurs k times in a
decomposition.
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Expanded Constructions

k ∑ Ĉ (Gi ) decomposition

2 n−1 {2 [K1]}
3 3

2
(n−1) {3 [K2]}

4 5
3

(n−1) {K3,3 [K2]}
5 9

5
(n−1) {4 [K3] ,3K2}

6 2(n−1) {6 [K2]}
7 7

3
(n−1) {7 [K3]}

8 9
4

(n−1) {K3,7 [K2]}
9 12

5
(n−1) {3 [K3] ,6 [K2]}

10 5
2

(n−1) {10 [K2]}
11 19

7
(n−1) {8 [K3] ,2 [K2] ,2K2}

12 3(n−1) {12 [K3]}
13 13

4
(n−1) {13 [K4]}

14 25
8

(n−1) {11 [K3] ,3 [K2]}
15 3(n−1) {15 [K2]}
16 17

5
(n−1) {K5,15 [K3]}

20 4(n−1) {20 [K4]}
21 21

5
(n−1) {21 [K5]}

30 5(n−1) {30 [K5]}
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Expanded Constructions

There is another way to generate decompositions that are
better for some orders. If a decomposition has

∑
k
i=1 Ĉ (Gi ) = c (n−1), then some factor Gi has

Ĉ (Gi )≤ c
k

(n−1). Generalizing this, we have the following.

Theorem

If there is a decomposition of Kn with ∑
k
i=1 Ĉ (Gi ) = c (n−1), then

given 0≤ p ≤ k−1, there is a decomposition of Kn with

∑
k−p
i=1 Ĉ (Gi )≥ c k−p

k
(n−1).

Furedi et al also proved the general upper bound that for all
positive integers n and k , Ĉ (k ;Kn)≤

√
k ·n. This is not

attained for any values of n and k . Using essentially the same
approach, this can be strengthened to a sharp bound.
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A General Upper Bound

Theorem

For all positive integers n and k, we have

Ĉ (k ;Kn)≤−k
2

+
√

k2

4
+kn (n−1). This is an equality exactly

when there is a decomposition of Kn into k cliques of equal size.

Proof.

For a k-decomposition, let di = Ĉ (Gi ) and D = ∑ Ĉ (Gi ). Then
m (Gi )≥

(
di+1
2

)
. Now

n (n−1)

2
=

(
n

2

)
≥

k

∑
i=1

(
di +1

2

)
=

1

2

k

∑
i=1

(
d2i +di

)
≥ 1

2

(
D2

k
+D

)
.

The �rst inequality is attained exactly when all the factors are
cliques, and the second is attained exactly when all the cliques have
the same size. Hence kn (n−1)≥ D2 +kD, so

D2 +kD−kn (n−1)≤ 0, and D ≤−k
2

+
√

k2

4
+kn (n−1).

Allan Bickle The k-Cores of a Graph



A General Upper Bound

We can obtain the successively simpler but weaker formulas

Ĉ (k ;Kn)≤−k
2

+
√

k2

4
+kn (n−1) <

√
kn (n−1) <

√
k
(
n− 1

2

)
<
√
k ·n as corollaries. The last is the bound

reported by Furedi et al.

A decomposition of Kn into k cliques of equal size is a block
design. In particular, it is a(
n,k ,

k+
√

k2+4kn(n−1)
2n

, 1
2

+
√

1
4

+ n(n−1)
k

,1

)
-design. Hence the

previous result will attain equality whenever such a design
exists.
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A General Upper Bound

Corollary

We have
1. Ĉ

((
n
2

)
;Kn

)
=
(
n
2

)
for n ≥ 2

2. Ĉ
(
n(n−1)

6
;Kn

)
= n(n−1)

3
for n ≡ 1 or 3 mod 6

3. Ĉ
(
n(n−1)

12
;Kn

)
= n(n−1)

4
for n ≡ 1 or 4 mod 12

4. Ĉ
(
n(n−1)

20
;Kn

)
= n(n−1)

5
for n ≡ 1 or 5 mod 20

5. Ĉ (n;Kn) =
(−1+

√
4n−3)n
2

for n = p2 +p+1, where p is a prime
power
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Other Parameters

It is immediate that
κ (k ,Kn)≤ λ (k ,Kn)≤ δ (k ,Kn)≤ Ĉ (k ;Kn). Furthermore, the
decompositions above show that these are all equalities for
1≤ k ≤ 4.

Conjecture

For all positive integers n and k , we have
κ (k ,Kn) = λ (k ,Kn) = δ (k ,Kn) = Ĉ (k ;Kn).
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Other Parameters

But what about chromatic number?

Stay tuned for part two next week!

Thank you!
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Chromatic Number

De�nition

The chromatic number of a graph, χ (G ), is the smallest number of
subsets into which the vertices of a graph can be partitioned so
that no two vertices in the same subset are adjacent.
A list coloring of a graph begins with lists of length k assigned to
each vertex and chooses a color from each list to obtain a proper
vertex coloring. A graph G is k-choosable if any assignment of lists
to the vertices permits a proper coloring. The list chromatic
number χl (G ), is the smallest k such that G is k-choosable.
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Chromatic Number

Theorem

[The core number bound] For any graph G,
χ (G )≤ χl (G )≤ 1+ Ĉ (G ).

Proof.

Establish a construction sequence for G . Each vertex has degree at
most equal to its core number when colored. Coloring it uses at
most one more color. Thus χ (G )≤ 1+ Ĉ (G ).

The bound χ (G )≤ 1+ Ĉ (G ). was �rst proved by Szekeres
and Wilf in 1968, stated in di�erent terms. The bounds for list
coloring were proved by Erdos, Rubin, and Taylor [1979], who
introduced list coloring.
Certainly we have Ĉ (G )≤4(G ) for all graphs. Thus the core
number bound is always at least as good as the maximum
degree bound.
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Chromatic Number

Proposition

Let G be a connected graph. Then Ĉ (G ) =4(G )⇐⇒ G is
regular.

Proof.

If G is regular, then δ (G ) =4(G ), so the result is obvious.
For the converse, let Ĉ (G ) =4(G ) = k . Then G has a subgraph
H with δ (H) =4(G )≥4(H), so H is k-regular. If H were not all
of G , then since G is connected, some vertex of H would have a
neighbor not in H, implying that 4(G ) >4(H) = δ (H) =4(G ).
But this is not the case, so G = H, and G is regular.
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Brooks' Theorem

Lemma

Given r ≥ 3, if G is an r -regular 2-connected noncomplete graph,
then G has a vertex v with two nonadjacent neighbors x and y
such that G − x− y is connected.

Proof.

Let G satisfy the hypothesis. Let u be a vertex of G. If G −u is
2-connected, let u be x and y be a vertex at distance two from u,
which exists because G is regular and not complete. Let v be their
common neighbor.
If G −u has connectivity one, then let v be u. Then G has at least
two end-blocks, and u has neighbors in all of them. Let x , y be two
such neighbors. They must be nonadjacent, and G − x− y is
connected since blocks have no cut-vertices and r ≥ 3.
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Brooks' Theorem

Theorem

[Brooks' Theorem] If G is connected, then χ (G ) = 1+4(G ) ⇐⇒
G is complete or an odd cycle.

Proof.

Equality certainly holds for cliques and odd cycles. Let G satisfy
the hypotheses. Then by the previous result, G is r -regular. The
result certainly holds for r ≤ 2, so we may assume r ≥ 3. If G had a
cut-vertex, each block could be colored with fewer than r +1 colors
to agree on that vertex, so we may assume G is 2-connected and to
the contrary not a clique.
By the lemma, we can establish a deletion sequence for G starting
with some vertex v and ending with its nonadjacent neighbors x
and y so that all vertices but v have at most r −1 neighbors when
deleted. Reversing this yields a construction sequence and coloring
greedily gives x and y the same color, so G needs at most r
colors.
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Brooks' Theorem

Brooks' Theorem extends to list coloring. The proof is slightly
more complicated. It is trivial that a graph can be colored to
agree on its blocks, but this is more complicated for list
coloring.

Lemma

Let G be a connected r −1-degenerate graph with a construction
sequence ending with a vertex v of order 1≤ d ≤ r −1. Then for
any assignment of lists of length r to the vertices, there are list
colorings using at least d +1 di�erent colors from the list for v .

Erdos, Rubin, and Taylor [1979] originally proved Brooks'
Theorem for list coloring as part of a more general result with
a longer proof.
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Chromatic Number and 2-Decompositions

Theorem

We have Ĉ (G ) + Ĉ
(
G
)
≤ n−1.

Corollary

[Nordhaus-Gaddum] We have χ (G ) + χ
(
G
)
≤ n+1.

Proof.

We have
χ (G ) + χ

(
G
)
≤ 1+ Ĉ (G ) +1+ Ĉ

(
G
)
≤ n−1+2 = n+1.
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Chromatic Number and 2-Decompositions

We would like to characterize the extremal decompositions for
the Nordhaus-Gaddum Theorem. Note that if a
2-decomposition of Kn achieves χ (G ) + χ

(
G
)

= n+1, then
we can easily construct a 2-decomposition of Kn+1 with
χ (G ) + χ

(
G
)

= n+2, by joining a vertex to all the vertices of

a color-critical subgraph of G or G , and allocating the extra
edges arbitrarily. Conversely, we may be able to delete some
vertex v of Kn so that χ (G ) + χ

(
G
)

= n. If this is impossible,
we say that an extremal decomposition is fundamental.

De�nition

A k-decomposition of Kn with K = ∑
k
i=1 χ (Gi ) achieving the

maximum possible such that no vertex v of Kn can be deleted so
that ∑

k
i=1 χ (Gi − v) = K −1 is called a fundamental decomposition.
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Chromatic Number and 2-Decompositions

Theorem

For k = 2, the fundamental decompositions that attain
χ (2;Kn) = n+1 are {K1,K1} and {C5,C5}.

Proof.

It is easily seen that these decompositions satisfy the equation and
are fundamental. Consider a fundamental 2-decomposition

{
G ,G

}
.

Then both graphs are connected. Let χ (G ) = r , so that
χ
(
G
)

= n+1− r . Then G is an r −1-core and G is an n− r -core.

But then G and G must be regular, since
n−1≤ Ĉ (G ) + Ĉ

(
G
)
≤ dG (v) +dG (v)≤ n−1. Now by Brooks'

Theorem, the only connected regular graphs achieving
χ (G ) = 1+ Ĉ (G ) are cliques and odd cycles. The only such graphs
whose complements are connected and also achieve the upper
bound are are K1 and C5. Thus the fundamental 2-decompositions
are as stated.
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Chromatic Number and 2-Decompositions

Corollary

The extremal 2-decompositions for the upper bound of the
Nordhaus-Gaddum theorem are exactly {Kp,Kn−p+1} and
{C5 +Kp,C5 +Kn−p−5}.

Proof.

It is immediate that these are extremal 2-decompositions. Assume
that we have an extremal 2-decomposition

{
G ,G

}
with order n

and let G be r -critical. If the critical subgraphs overlap on a single
vertex and G = Kr , then G = Kn−r + rK1, which is uniquely
n− r +1-colorable. Deleting any edge of the copy of Kn−r would
reduce the chromatic number, so Kn−r+1 is the only possible
n− r +1-critical subgraph. If G 6= Kr has order p ≥ r +2, then the
critical subgraph of G is contained in Kn−p +pK1, which is
impossible. If the critical subgraphs overlap on C5, the argument is
similar.
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Chromatic Number and 2-Decompositions

In 1968, H. J. Finck determined a similar but inelegant
characterization whose proof is more than three pages long. In
2008, Starr and Turner determined the following alternative
characterization.

Theorem

Let G and G be complementary graphs on n vertices. Then
χ (G ) + χ

(
G
)

= n+1 if and only if V (G ) can be partitioned into
three sets S, T , and {x} such that G [S ] = Kχ(G)−1 and
G [T ] = K

χ(G)−1.

This characterization leaves something to be desired since it is
not obvious which graphs satisfy the condition given in the
theorem. However, this result follows immediately as a
corollary to the previous theorem.
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Chromatic Number and 2-Decompositions

We can generalize to k-decompositions into spanning factors.

Corollary

Let D be a k-decomposition of Kn into factors that are critical with
respect to chromatic number. Then ∑D (χ (Gi ))≤ n−1+k with
equality exactly for

{
Kn,(k−1)

[
Kn

]}
and {k [Cn]}, n = 2k +1.

Proof.

We have ∑D χ (Gi )≤ ∑D

(
1+ Ĉ (Gi )

)
≤ n−1+k . By Brooks'

Theorem, equality requires that every factor be a clique, empty, or
an odd cycle. Thus the extremal decompositions are as stated.
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Chromatic Number and 2-Decompositions

Theorem

If G is regular and χ (G ) + χ
(
G
)

= n, then the 2-decompositions

that satisfy this equation are
{
C7,C 7

}
and {C4,2K2}.

Proof.

Assume the hypothesis. Then
n = χ (G ) + χ

(
G
)
≤ 1+ Ĉ (G ) +1+ Ĉ

(
G
)

= n+1, so exactly one

of G or G achieves the core number bound, say G . If G is
connected, then by Brooks' Theorem, G is a complete graph or odd
cycle. But the complement of a complete graph also achieves the
upper bound. If G is an odd cycle of length at least 5, then
χ
(
Cn

)
= n+1

2
. But Cn is n−3-regular, so n+1

2
= n−3 implies

n = 7.
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List Coloring and 2-Decompositions

Proof.

If G is disconnected, then it is a union of r -regular components, at
least one of which is a clique or an odd cycle. Consider starting
with only this component and adding another component with
order k . This increases χ (G ) + χ

(
G
)
by at most k− r . Thus to

satisfy the equation we want r = 1, so the new component is K2,
and no other component can be added. Thus only the
2-decomposition {C4,2K2} works.

Corollary

[Nordhaus-Gaddum] We have χl (G ) + χl

(
G
)
≤ n+1.

Proof.

We have
χl (G ) + χl

(
G
)
≤ 1+ Ĉ (G ) +1+ Ĉ

(
G
)
≤ n−1+2 = n+1.
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List Coloring and 2-Decompositions

Theorem

For k = 2, the fundamental decompositions that attain
χl (2;Kn) = n+1 are {K1,K1} and {C5,C5}.

Corollary

The extremal 2-decompositions for the upper bound of the
Nordhaus-Gaddum theorem are exactly {Kp,Kn−p+1} and
{C5 +Kp,C5 +Kn−p−5}.

The proofs are virtually identical to those for chromatic
number.
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Chromatic Number and 3-Decompositions

Jan Plesnik studied χ (k ;Kn) and in 1978 made the following
conjecture.

Conjecture [Plesnik's Conjecture]

For n ≥
(
k
2

)
, χ (k ;Kn) = n+

(
k
2

)
.

For k = 2, this is just the Nordhaus-Gaddum Theorem. Plesnik
proved the conjecture for k = 3 and determined an upper
bound for χ (k ,Kn).

There is a simple construction that shows χ (k ;Kn) is at least
n+

(
k
2

)
. Take the line graph L(Kk) with order

(
k
2

)
and

decompose it into k copies of Kk−1. For any additional vertex,
make it adjacent to all the vertices of one of the cliques in the
decomposition and allocate any extra edges arbitrarily.
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Chromatic Number and 3-Decompositions

Plesnik proved a recursive upper bound of
χ (k ;Kn)≤ n+ t (k), where t (2) = 1 and t (k) = ∑

k−1
i=2

(
k
i

)
t (i).

Thus t (3) = 3 and t (4) = 18.

This implies a worse explicit bound of χ (k ;Kn)≤ n+2(k+1
2 ).

In 1985, Timothy Watkinson improved this upper bound to
χ (k ;Kn)≤ n+ k!

2
.

In 2005, Furedi, Kostochka, Stiebitz, Skrekovski, and West
proved an improved upper bound for large k of
χ (k ;Kn)≤ n+7k .

All of these bounds remain far from Plesnik's conjecture,
however.
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Chromatic Number and 3-Decompositions

We can describe many fundamental decompositions for k ≥ 3
using the following construction.

Algorithm [Construction of fundamental k-decompositions]

For k ≥ 3 and n ≥
(
k
2

)
, construct a decomposition of Kn as follows.

1. Start with the line graph L(Kk) decomposed into k copies of
Kk−1.
2. Replace each vertex by either K1 decomposed into {K1,K1} or
K5 decomposed into {C5,C5}.
3. Join each factor to the other factors corresponding to the same
copy of Kk−1 in the decomposition of L(Kk).
4. Allocate any remaining edges arbitrarily.
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Chromatic Number and 3-Decompositions

We will see below that the graphs produced by this algorithm
attain the bound of Plesnik's conjecture. This algorithm
produces all such graphs for k = 2 but not all for k = 3.

Lemma

1. For k ≥ 3, let D be a k-decomposition with every vertex
contained in exactly two color-critical subgraphs of the
decomposition that maximizes ∑

k
i=1 χ (Gi ). Then

∑
k
i=1 χ (Gi ) = n+

(
k
2

)
.

2. The k-decompositions produced by the preceding algorithm
satisfy ∑

k
i=1 χ (Gi ) = n+

(
k
2

)
.

Allan Bickle The k-Cores of a Graph



Chromatic Number and 3-Decompositions

Proof.

Assume the hypothesis and let Hi be the critical subgraphs of the k
graphs. Thus we can partition the n vertices into

(
k
2

)
classes:

Vij = V (Hi )∩V (Hj). Now the edges between Vij and Vil may as
well be in Hi since this is the only critical subgraph with vertices in
both classes. Similarly, if Vij and Vlm have no common indices,
then no edges between them are contained in a critical subgraph.
Then χ (Hi )≤ ∑j χ (Hi [Vij ]), where 1≤ j ≤ k , i 6= j . Then

n+
(
k
2

)
≤ ∑ χ (Hi )≤ ∑i ,j χ (Hi [Vij ])≤ ∑(n (Vij) +1) = n+

(
k
2

)
,

with the last inequality following from the Nordhaus-Gaddum
theorem. But then we have equalities, which implies that

∑
k
i=1 χ (Gi ) = n+

(
k
2

)
, and the two graphs that decompose Kn [Vij ]

form an extremal 2-decomposition. Since {K1,K1} and {C5,C5}
are fundamental 2-decompositions, the algorithm produces
fundamental k-decompositions.
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Chromatic Number and 3-Decompositions

Theorem

For k = 3 and n ≥ 3, χ (3;Kn) = n+3.

Proof.

Assume that some fundamental decomposition of Kn into three
factors yields χ (G1) = a+1, χ (G2) = b+1, and χ (G3) = c +1,
with a+b+ c = n. We may consider the critical subgraphs Hi of
the three graphs, which are a, b, and c-cores, respectively. Now no
vertex of Kn can be contained in all three of the Hi 's, since this
would imply that Kn has at least a+b+ c +1 = n+1 vertices.
Since deleting a vertex from a k-critical graph produces a
k−1-chromatic graph and the decomposition is fundamental, every
vertex is contained in exactly two of the three critical subgraphs.
Then by the lemma, χ (3;Kn) = n+3.

Allan Bickle The k-Cores of a Graph



Chromatic Number and 3-Decompositions

All the critical subgraphs of the fundamental decompositions
must be contained in joins of Kn, Kn, and C5.

The fundamental 3-decompositions produced by the algorithm
are {K2,K2,K2}, {W5,W5,K2}, {W5,W5,C5 +C5}, and
{C5 +C5,C5 +C5,C5 +C5}. However, these are not all the
fundamental 3-decompositions. This is because the extremal
2-decompositions produced in the next-to-last sentence of the
proof of the lemma need not be fundamental, as can be seen
in the �gure below.

A fundamental 3-decomposition with 2-decompositions {K1,K1},
{C5,C5}, and

{
K2,K 2

}
.
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Chromatic Number and 3-Decompositions

The joins in question will themselves be color-critical except in
the case of C5 +Kn−5.

Lemma

There are exactly six 4-critical subgraphs of G = C5 +Kn−5.

This is proved by a case-checking argument.
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Chromatic Number and 3-Decompositions

The 4-critical graphs W5, G1 = M (K3), G2, G3, G4, G5.
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Chromatic Number and 3-Decompositions

Proof.

Clearly any such subgraph must contain the copy of C5 and at least
one more vertex. If n = 6, W5 = C5 +K1 is clearly the only
possibility. Let S be the set of vertices not on C5. Since we want a
4-critical subgraph, consider adding each vertex in S one at a time.
Then each of them must successively restrict the possible colorings
of G , since otherwise it could be deleted and there would be a
smaller 4-critical subgraph.
Suppose a vertex in S has degree 4. Note that any vertex of degree
3 either (A) neighbors three consecutive vertices on the cycle or
(B) exactly two consecutive vertices on the cycle and a third not
adjacent to either of them. Adding a vertex of degree 4 or a degree
3 vertex of type A adjacent to the remaining vertex on the cycle
produces a 4-chromatic graph, but at least one edge can be deleted
to obtain a 4-critical graph G1. Checking the possible placements of
a degree 3 vertex of type B, only one possibility produces a 4-critical
graph. (This is M (K3), applying Mycielski's construction.)
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Chromatic Number and 3-Decompositions

Proof.

Now suppose that we start with a vertex v of type A. Adding a
vertex u of type A having one common neighbor with v produces a
4-critical graph G2 (which is the result of applying the Hajos
construction to two copies of K4). If instead u has two common
neighbors with v , checking cases shows that there is only one way
to add a vertex w (of type B) to produce a 4-critical graph G3.
Now suppose that we allow exactly one vertex v of type A.
Checking cases shows that there is exactly one way to produce a
4-critical graph G4, by adding two type B vertices, each having two
consecutive vertices of the cycle as common neighbors with v .
Finally, suppose that we allow only vertices of type B. There are
�ve possible placements of a type B vertex. Adding all �ve of them
produces a 4-chromatic graph G5, but deleting one produces a
3-chromatic graph. Thus G5 must be 4-critical.
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Chromatic Number and 3-Decompositions

Theorem

There are exactly 29 fundamental 3-decompositions. These are
given in the following table, where we let C5,5 = C5 +C5. (The
generalized wheel, Wp,q = Cp +Kq, is 3+q-critical if p is odd.)

{K2,K2,K2} {W5,W5,K2} {W5,W5,C5,5} {C5,5,C5,5,C5,5}

{W5,K3,G1} {W5,K3,G2} {W5,K4,G3} {W5,K4,G4} {W5,K6,G5}

{C5,5,W5,2,G1} {C5,5,W5,2,G2} {C5,5,W5,3,G3} {C5,5,W5,3,G4} {C5,5,W5,5,G5}

{G1,G1,K4}

{G1,G2,K4} {G2,G2,K4}

{G1,G3,K5} {G2,G3,K5} {G3,G3,K6}

{G1,G4,K5} {G2,G4,K5} {G3,G4,K6} {G4,G4,K6}

{G1,G5,K7} {G2,G5,K7} {G3,G5,K8} {G4,G5,K8} {G5,G5,K10}
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Chromatic Number and 3-Decompositions

Proof.

By the lemma, there are exactly �ve extremal 2-decompositions
that can appear in a fundamental 3-decomposition: {C5,C5},
{K1,K1},

{
K2,K 2

}
,
{
K3,K 3

}
, and

{
K5,K 5

}
. Denote the �rst two

as symmetric and the last three nonsymmetric. One of these �ve
must be chosen for each of the three overlap sets of a fundamental
3-decomposition, but this choice is not independent. If a
nonsymmetric 2-decomposition appears, then {C5,C5} must also
appear. Joining a pair of graphs from the 2-decompositions
produces a color-critical graph except in the case G = C5 +Kn−5,
n ≥ 7, for which the lemma provides �ve possible color-critical
subgraphs.
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Chromatic Number and 3-Decompositions

Proof.

If all three 2-decompositions are symmetric, there are four
possibilities, as given in the �rst row of the table.
Suppose exactly one nonsymmetric 2-decomposition appears. Then
{C5,C5} must also appear, and the third 2-decomposition can be
either {C5,C5} or {K1,K1}. Thus there are 5 ·2 = 10 possibilities,
which are given in the second and third rows of the table.
Suppose exactly two nonsymmetric 2-decompositions appear, so
{C5,C5} is the third. Then we must choose two of the �ve
color-critical subgraphs as factors, and the third must be a clique.
Thus there are

(
5
2

)
+5 = 15 possibilities, which are given in last �ve

rows of the table.

Allan Bickle The k-Cores of a Graph



Chromatic Number and 3-Decompositions

We would like to determine all extremal 3-decompositions.
Examples of some that are not fundamental include
{Kp,Kp,C2p−1} or {Kp +C5,Kp +C5,C2p−1}.
Not all fundamental k-decompositions are produced by the
algorithm for k ≥ 4. Watkinson describes a decomposition of
K7 into {K4,K3,K3,C5}, though his presentation of this
example contains an error. This example has a vertex
contained in three critical subgraphs. The decomposition
nonetheless has ∑

4
i=1 χ (Gi ) = n+

(
4
2

)
= 7+6 = 13.
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Chromatic Number and 3-Decompositions

Figure: A 4-decomposition of K7 into {K4,K3,K3,C5} with a
vertex contained in three factors.

It appears unlikely that these results for k = 3 can be extended
to list coloring. This is because there is no known formula
expressing the list chromatic number of the join of two graphs
in terms of the list chromatic numbers of the graphs.
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Other Parameters

We can determine analogous results for many other
parameters. Furedi et al also considered the clique number.

Theorem

For all positive integers n and k with n ≥
(
k
2

)
, ω (k ;Kn) = n+

(
k
2

)
.

The decomposition of the line graph L(Kk) into k copies of
Kk−1 achieves ω (k ;Kn) = n+

(
k
2

)
.
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Other Parameters

Theorem

We have α (k ;Kn) = (k−1)n+1.

Proof.

Consider the decomposition
{
Kn,Kn, ...,Kn

}
. Then

∑α (Gi ) = (k−1)n+1.
We use induction on order. Certainly α (k ;K1) = k . Assume
α (k ;Kr ) = (k−1) r +1, and let D be a decomposition of
G = Kr+1. Consider the decomposition D ′ of G − v formed by
deleting v from each subgraph of D. If ∑D ′ α (Gi ) < (k−1) r +1,
then ∑D α (Gi )≤ (k−1) r +k = (k−1)(r +1) +1. If

∑D ′ α (Gi ) = (k−1) r +1, then by the pigeonhole principle, some
vertex of Kr is contained in all k independent sets. Then v is
contained in at most k−1 independent sets, so

∑D α (Gi )≤ (k−1) r +1+ (k−1) = (k−1)(r +1) +1. In either
case, the result holds by induction.
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Other Parameters

Note that the case k = 2, α (2;Kn) = n+1, is essentially the
Nordhaus-Gaddum theorem due to the symmetry of
complementation. The previous proposition and the
decomposition it depends on also imply that the same formula
holds for domination number and various related parameters.

Theorem

We have β (k ;Kn) =
⌊
n
2

⌋
min{k ,χ ′ (Kn)}.

Proof.

A decomposition containing min{k ,χ ′ (Kn)} copies of
⌊
n
2

⌋
K2

shows that β (k ;Kn)≥
⌊
n
2

⌋
min{k ,χ ′ (Kn)}. Equality must hold

since β (Kn) =
⌊
n
2

⌋
and there are at most χ ′ (Kn) such factors.
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Other Parameters

Theorem

We have 4(k ;Kn) =
(
n
2

)
−
(
n−k
2

)
.

Proof.

Consider the decomposition with Gi = K1,max(n−i ,0) and any extra
edges distributed arbitrarily. Then

∑4(Gi ) = ∑
n−1
i=max(n−k,0) i =

(
n
2

)
−
(
n−k
2

)
.

We use induction on order. If k ≥ n, then

∑D4(Gi )≤ ∑Dm (Gi ) =
(
n
2

)
. If k < n, assume

4(k ;Kr ) =
(
r
2

)
−
(
r−k
2

)
, and let D be a decomposition of

G = Kr+1. Let v be a vertex that does not uniquely have maximum
degree in any of the k subgraphs. Consider the decomposition D ′

of G − v formed by deleting v from each subgraph of D. Then
adding v to the subgraphs of D ′ increases each maximum degree by
at most one. Then ∑D4(Gi )≤

(
r
2

)
−
(
r−k
2

)
+k =

(
r+1
2

)
−
(
r+1−k

2

)
.

The result holds by induction.
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Other Parameters

Certainly χ ′ (k ;Kn)≥4(k ;Kn), and when n−k ≥ 2 is even,
χ ′ (k ;Kn)≥4(k ;Kn) +1.

Conjecture

We have

χ
′ (k ;Kn) =

{
∆(k ;Kn) +1 n−k ≥ 2even

∆(k ;Kn) else
.
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Thank You!

Thank you!
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