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A Motivating ProblemConsider the following problem. An international round-robin sportstournament is held between n teams. The games are split betweenk loations in di�erent ountries, whih an host multiple gamessimultaneously. The teams an travel to di�erent loations to play,but it is impratial for the fans to visit more than one loation. Inthis situation, it is reasonable to want teams that play at a givenloation to play as many games there as possible so that loal fansan see them as muh as possible. More preisely, we an omputethe minimum number of games played by the teams at thatloation. We then wish to maximize the sum of these minimumnumbers over all the loations in the tournament.
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Graph TheoryDe�nitionA graph G is omposed of a set of verties V (G ) and a set ofedges E (G ), a subset of the set of 2-element subsets of V (G ).Graphs are typially drawn with dots representing verties andurves representing edges.De�nitionA subgraph H of a graph G is a graph with V (H)⊆ V (G ) andE (H)⊆ E (G ).De�nitionThe order of a graph n = n (G ) is the ardinality of its vertex set.Allan Bikle The k-Cores of a Graph
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Complete Graphs
De�nitionThe omplete graph Kn is the graph with order n and all possibleedges. A omplete subgraph of another graph is referred to as alique.De�nitionThe yle Cn is the graph with order n that is onneted with witheah vertex adjaent to two other verties.
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Graph ParametersDe�nitionThe degree of vertex v of graph G , dG (v), is the number ofverties that are adjaent to it. When the graph in question islear, we write d (v).De�nitionA graph parameter is a funtion p (G ) whose domain is all graphs.The minimum degree of a graph δ (G ) is its smallest degree.The maximum degree of a graph ∆(G ) is its largest degree.A graph G is regular if all verties have the same degree (hene
δ (G ) = ∆(G )).De�nitionThe hromati number χ (G ) is the smallest number of subsets intowhih the vertex set an be partitioned so that adjaent verties arein distint sets. Allan Bikle The k-Cores of a Graph
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OperationsDe�nitionA graph is p-ritial with respet to parameter p if deleting anyedge will redue the value of the parameter. That is,p (G − e)< p (G ) for any edge e.De�nitionThe join of G and H, G +H, has as its vertex set the disjoint unionof the vertex sets of G and H, and its edge set ontains all edges ofG and H, and all edges between the opies of G and H.De�nitionThe omplement G of a graph G is a graph with the same vertexset and E (G)
= E (G ) (the set omplement relative to the set ofall possible edges). Allan Bikle The k-Cores of a Graph
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Nordhaus-Gaddum Class TheoremsOne ommon way to study a graph parameter p (G ) is toexamine the sum p (G )+p (G) and produt p (G ) ·p (G).Nordhaus and Gaddum proved the following Theorem forhromati number in 1956.Theorem 2√n ≤ χ (G )+ χ
(G)

≤ n+1n ≤ χ (G ) ·χ
(G)

≤
(n+12 )2

Fink [1968℄ showed that all of these bounds are sharp anddetermined the extremal graphs.Allan Bikle The k-Cores of a Graph



Nordhaus-Gaddum Class TheoremsChartrand and Mithem [1971℄ found similar bounds for othergraph parameters.A theorem providing sharp upper and lower bounds for thissum and produt is known as a theorem of theNordhaus-Gaddum lass.De�nitionA deomposition of a graph is a olletion of subgraphs whihpartitions its edge set. A k-deomposition of a graph G is adeomposition of G into k subgraphs. The subgraphs in adeomposition are alled fators.A graph and its omplement deompose a omplete graph.Hene a natural generalization of this problem is to onsiderdeompositions into more than two fators.Allan Bikle The k-Cores of a Graph



Nordhaus-Gaddum Class Theorems
The sum upper bound has attrated the most attention.De�nitionFor a graph parameter p, let p (k ;G ) denote the maximum of

∑ki=1 p (Gi ) over all k-deompositions of G .Furedi, Kostohka, Stiebitz, Skrekovski, and West [2005℄explored this upper bound for several di�erent parameters.We will tend to desribe a k-deomposition as {H1, ...,Hk},where eah Hi is a p-ritial subgraph.Allan Bikle The k-Cores of a Graph



k-CoresDe�nitionThe k-ore of a graph G , Ck (G ), is the maximal indued subgraphH ⊆ G suh that δ (H)≥ k .If D is the largest k suh that G has a k-ore, the D-ore of G isalled the maximum ore.The k-ore was introdued by Steven B. Seidman in a 1983paper entitled Network struture and minimum degree.It is immediate that the k-ore is well-de�ned and that theores are nested.It is immediate that the k-ore of a graph must have order atleast k+1. Allan Bikle The k-Cores of a Graph



k-Cores

G is its own 0-ore.Allan Bikle The k-Cores of a Graph



k-Cores

The 1-ore of G .Allan Bikle The k-Cores of a Graph



k-Cores

The 2-ore of G .
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k-Cores

The 3-ore of G is 2K4.
Allan Bikle The k-Cores of a Graph



k-CoresDe�nitionA vertex deletion sequene of a graph G is a sequene of vertiesobtained by suessively deleting a vertex of minimum degree fromG . A vertex onstrution sequene of a graph G is obtained byreversing a vertex deletion sequene.The degeneray of G , D (G ), is the largest degree of a vertex whendeleted by this proess.It is immediate that δ (G )≤ D (G )≤△(G ).De�nitionIf the degeneray and minimum degree of G are equal,D (G ) = δ (G ), we say G is k-monoore.Translating our motivating problem into graph theory terms,we wish to �nd δ (k ;Kn) over all values of k and n. We willinvestigate D (k ;Kn), whih may be the same thing.Allan Bikle The k-Cores of a Graph



k-CoresWe need a way to determine the k-ore of a graph. Iterativelydeleting all verties of degree less than k aomplishes this.We all this the k-ore algorithm.TheoremApplying the k-ore algorithm to graph G yields the k-ore of G ,provided it exists.Theorem[Batagelj/Zaversnik 2003℄ The k-ore algorithm has e�ienyO (m). (That is, it is linear on the size m.)Allan Bikle The k-Cores of a Graph
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Degeneray and 2-DeompositionsTheorema. We have D (G )+D (G)
≤ n−1.b. The graphs for whih D (G )+D (G)

= n−1 are exatly thegraphs onstruted by starting with a regular graph and iteratingthe following operation.Given k =D (G ), H a k-monoore subgraph of G , add a vertexadjaent to at least k+1 verties of H, and all verties of degree kin H (or similarly for G).Proof.a. Let p =D (G ) and suppose G has an n−p-ore. These oresuse at least (p+1)+(n−p+1) = n+2 verties, and hene share aommon vertex v . But then dG (v)+dG (v)≥ p+(n−p) = n, aontradition. Allan Bikle The k-Cores of a Graph



Degeneray and 2-DeompositionsProof.b. (⇐) If G is regular with k = D (G ), then G is n− k−1-regular,so D (G )+D (G)
= n−1. If a vertex v is added as in theoperation, produing a graph H, a k+1-ore is produed, soD (H)+D (H)

= (n+1)−1.
(⇒) Suppose that for a graph G , D (G )+D (G)

= n−1. If G andG are both monoore, then they must be regular. If G has a vertexv that is not ontained in the maximum ores of both G and G ,then D (G − v)+D (G − v)= (n−1)−1. Then v is ontained inthe maximum ore of one of them, say G . Further, givenk = Ĉ (G ), v is ontained in a k-monoore subgraph H of G , andH− v must be k−1-monoore. Then v must have been adjaentto all verties of degree k−1 in H− v . Thus G an be onstrutedas desribed using the operation.Allan Bikle The k-Cores of a Graph



Degeneray and 2-DeompositionsTheorem[The degeneray bound℄ For any graph G, χ (G )≤ 1+D (G ).Proof.Establish a onstrution sequene for G . Eah vertex has degree atmost D (G ) when olored. Coloring is uses at most one more olor.Thus χ (G )≤ 1+D (G ).This upper bound is better than the more famous bound
χ (G )≤ 1+∆(G ) (the maximum degree bound). This is aorollary, sine D (G )≤∆(G ).Corollary[Nordhaus-Gaddum℄ We have χ (G )+ χ

(G)
≤ n+1.Proof.

χ (G )+ χ
(G)

≤ 1+D (G )+1+D (G)
≤ n−1+2= n+1.Allan Bikle The k-Cores of a Graph



DegenerayThis theorem says that in any extremal 2-deomposition intospanning fators, they must be regular. This generalizes tok-deompositions.CorollaryLet M be a k-deomposition of Kn into fators that are ritialwith respet to a maximum ore number. Then
∑M (D (Gi ))≤ n−1 with equality exatly for deompositions into kspanning regular graphs.Proof.Given vertex v , we have ∑M (D (Gi ))≤ ∑dGi (v)≤ n−1. Equalityholds exatly when every fator is regular.Allan Bikle The k-Cores of a Graph



The Two Fator TheoremNext we onsider k-deompositions with the restrition thateah vertex is ontained in exatly two fators. Consider thefollowing onstrution.AlgorithmLet r1, ..., rk be nonnegative integers at most one of whih is odd.Let Gij , 1≤ i < j ≤ k be an ri -regular graph of order ri + rj +1, andlet Gji = G ij . Let Gi = ⊕j ,j 6=iGji . Let Sk be the set of allk-deompositions of the form {G1, ...,Gk} onstruted in thisfashion.
Allan Bikle The k-Cores of a Graph



The Two Fator TheoremTheorem[Two Fator Theorem℄ A k-deomposition with order n > 1 andevery vertex in exatly two fators has ∑M (D (Gi ))≤ (2k−3k−1 )n− k2 ,and equality holds exatly for those deompositons in the set Sk .Proof.Sine eah vertex is ontained in exatly two of the k fators, so wean partition them into (k2) distint lasses. LetHij = V (Gi)∩V (Gj) and let nij = |Hij | for i 6= j , nii = 0. Henen = ∑i ,j nij . For v ∈ Hij , we haveD (Gi)≤ dGi (v)≤ dGi [Hij ] (v)+∑kt=1 nit . Sum for eah of the twofators and eah of the (k2) lasses. Then (k−1)∑ki=1D (Gi )≤2(k−2)∑i ,j nij +∑i ,j ,i 6=j (nij −1) = (2k−3)n− (k2), so
∑ki=1D (Gi )≤ (2k−3k−1 )n− k2 .Allan Bikle The k-Cores of a Graph



The Two Fator TheoremProof.
(⇒) If this bound is an equality, then all k of the fators must beregular. Let rij = dGi [Hij ] (v) for v ∈ Gi [Hij ]. Also, all edges betweentwo lasses sharing a ommon fator must be in that fator, so it isa join of k−1 graphs. A join of graphs is regular only when theyare all regular. Now sine Gi is regular, its omplement must alsobe regular. But this implies that all the onstants rji , j 6= i areequal. Let ri be this ommon value. Then nij = ri + rj +1, son = (k−1)∑ ri + (k2). This implies that at most one of ri and rj isodd, so at most one of all the ri 's is odd.
(⇐) Let Gi be a fator of a deomposition M onstruted using thealgorithm. It is easily seen that Gi is regular of degree(
(k−3) ri +(k−2)+∑j rj). Summing over all the fators, we �ndthat ∑M (D (Gi )) = (2k−3k−1 )n− k2 .Allan Bikle The k-Cores of a Graph



Degeneray and 3-DeompositionsNow onsider 3-deompositions. The formula in the followingtheorem was proven by Furedi et al.TheoremWe have D (3;Kn) = ⌊32 (n−1)⌋, and the extremal deompositionsthat avhieve ∑3i=1D (Gi) = 32 (n−1) all onsist of threen−12 -regular graphs. For n = 1, {K1,K1,K1} is the only extremal3-deomposition, and for odd order n > 1 they are exatly those inthe set S3.Proof.Let G1, G2, and G3 be the three fators of an extremaldeomposition for D (3;Kn). It is obvious that {K1,K1,K1} is theonly possibility for n = 1, so let n > 1. The previous theorem showsthat ∑3i=1D (Gi )≤ 32 (n−1).Allan Bikle The k-Cores of a Graph



Degeneray and 3-DeompositionsProof.Now any vertex an be ontained in at most two of the threefators, sine its degrees in the three graphs sum to at most n−1.Now adding a vertex with adjaenies so that it is ontained inexatly one of the three fators inreases n by one and ∑3i=1D (Gi )by at most one, so this annot violate the bound. Thus deleting avertex of an extremal deomposition ontained in only one of thethree fators would derease n by one and ∑3i=1D (Gi ) by at mostone. For n odd, this is a ontradition and for n even it an ouronly when it is the only suh vertex.If there are only two distint lasses, then add a vertex joined to allthe verties of the two disjoint fators. This inreases n by one and
∑3i=1D (Gi ) by two. Hene if the new deomposition satis�es thebound, so does the original, and if the orginal deompositionattains the bound, then n must be even.Allan Bikle The k-Cores of a Graph



Degeneray and 3-DeompositionsProof.Thus by the Two Fator Theorem, those deompositions with
∑3i=1D (Gi ) = 32 (n−1) are exatly those in S3. Further, by theproof of this theorem the fators of suh a deomposition are all1+∑rj -regular. Now 2(r1+ r2+ r3) = ∑(nij −1) = n−3, so
∑j rj = n−32 . Thus the fators are all n−12 -regular.Finally note that joining a vertex to all verties of one fator of anextremal deomposition of odd order attains the bound for evenorder, so D (3;Kn) = ⌊32 (n−1)⌋ for even orders as well.An extremal deomposition of even order an be formed fromone of odd order by either joining a vertex to one of thefators or deleting a vertex ontained in two fators. However,the deomposition {K4,C4,C4} shows that not all extremaldeompositions of even order an be formed this way.Allan Bikle The k-Cores of a Graph



Degeneray and 4-DeompositionsFuredi et al also proved that D (4;Kn) = ⌊53 (n−1)⌋. We usetheir proof to show that all extremal deompositions withn = 3r +1> 1 an be onstruted by the following algorithm.AlgorithmLet n, r , a, b,  , and s be nonnegative integers with n = 3r +1,a+b+  = s−1 and a, b,  , even if s is odd. Let G1, G2, G3 be a,b, -regular graphs, respetively, of order s. Let G4, G5, G6 ber − s-regular graphs of orders r − a, r −b, r −  , respetively. Let Sbe the set of all deompositions of the form{G1+G4,G2+G5,G3+G6,G 3+G4+G6}.TheoremWe have D (4;Kn) = ⌊53 (n−1)⌋. For n = 1, {K1,K1,K1,K1} is theonly extremal 4-deomposition and the extremal deompositions oforder n = 3r +1> 1 that ahieve ∑4i=1D (Gi) = 53 (n−1) areexatly those in S. Allan Bikle The k-Cores of a Graph



Degeneray and 4-DeompositionsProof.It is obvious that {K1,K1,K1,K1} is the only possibility for n = 1,so let n > 1. It is easily heked that the deompositions in S existand ahieve the stated sum. Joining a vertex to one of the fatorsahieves the stated bound for n = 3r +2, and deleting a vertexontained in two of the fators ahieves the bound for n = 3r .As in the previous theorem, it is easily shown that no vertex isontained in a single fator or all four fators. If eah vertex isontained in exatly two of the four fators, then the Two FatorTheorem says that ∑4i=1D (Gi )≤ 53n−2. Hene this deompositionis not extremal for n = 3r +1.Allan Bikle The k-Cores of a Graph



Degeneray and 4-DeompositionsProof.Consider an extremal deomposition with a vertex ontained inthree of the fators. Call these fators 1, 2, and, 3 so thatD (G1)≤ D (G2)≤ D (G3). Let H123 = V (G1)∩V (G2)∩V (G3)and Hi4 = V (Gi)∩V (G4). Then D (G1)+D (G2)+D (G3)≤ n−1,so D (G1)+D (G2)≤ 23 (n−1). Now D (G3)+D (G4)≤ n−1, so
∑4i=1D (Gi )≤ 53 (n−1), and D (4;Kn) = ⌊53 (n−1)⌋.If ∑4i=1D (Gi) = 53 (n−1), then D (G1)+D (G2) = 23 (n−1) andD (G3)+D (G4) = n−1. The former implies thatD (G1) = D (G2) = D (G3) = 13 (n−1). The latter and this implythat D (G4) = 23 (n−1) and eah vertex in Gi ∩G4, i ∈ {1,2,3}, isonly adjaent to verties in these two fators. Hene the vertiespartition into H123 and Hi4 = Gi ∩G4, i ∈ {1,2,3} whose orders weall n123 and ni4, respetively. Furthermore, eah of the fators isregular. Allan Bikle The k-Cores of a Graph



Degeneray and 4-DeompositionsProof.Then H123 is deomposed into three regular spanning fators whosedegrees are even if n123 is odd, and the other sets are deomposedinto two regular spanning graphs. Let ri ,S = dGi [HS ] (v) forv ∈ Gi [HS ]. Hene r1,123+n14 = r1,14+n123,r2,123+n24 = r2,24+n123, and r3,123+n34 = r3,34+n123. Now sineG4 is regular, so is G 4. Thus r1,14 = r2,24 = r3,34, so eah of thefators is regular of the same degree. Let r = 13 (n−1) be thisommon value, s = n123, so r − s = r1,14 = r2,24 = r3,34. Leta = r1,123, b = r2,123, and  = r3,123, so a+b+  = s−1,n14 = r − a, n24 = r −b, and n34 = r −  . There are no parityproblems, so the extremal deomposition an be onstruted by thealgorithm. Allan Bikle The k-Cores of a Graph



Bounds for k=5 and 6The values of D (k ;Kn) for k ∈ {2,3,4} satisfyD (k ;Kn) = ⌊2k−3k−1 (n−1)⌋. In fat, Furedi et al produed asimple onstrution to prove that D (k ;Kn)≥ ⌊2k−3k−1 (n−1)⌋,but this is not an equality for k ≥ 5.AlgorithmLet S∗5 be the set of all deompositions that an be onstruted asfollows. Take a deomposition M in S4 with the additional propertythat the sum of some two of the four ri 's equals the sum of theother two ri 's (e.g. r1+ r2 = r3+ r4). Let r be this ommon value.Add the fator Kr+1,r+1 to the deomposition.Allan Bikle The k-Cores of a Graph



Bounds for k=5 and 6TheoremWe have D (5;Kn)≥ ⌊116 n−2⌋.Proof.This onstrution has ∑5i=1D (Gi ) = 53n−2+ n6 = 116 n−2 for anyorder that it an attain. The proof of the Two Fator Theoremshows that a deomposition in Sk has order n = (k−1)∑ ri + (k2).For k = 4, this gives n = 3∑ ri +6. To satisfy the property in theonstrution, all the ri 's must be even, and it is obvious that anynonnegative even r an be attained. Hene for eah positive ordern = 6r there is a deomposition in S∗5 with this order. Suessivelydeleting �ve verties ontained in exatly two fators from suh adeomposition provides deompositions attaining the bound for theother �ve lasses of orders mod 6.Allan Bikle The k-Cores of a Graph



Bounds for k=5 and 6ConjetureFor n ≥ 2, D (5;Kn) = ⌊116 n−2⌋.The best known upper bound, due to Furedi et al says thatD (5;Kn)≤ 2n−3.AlgorithmLet S∗6 be the set of all deompositions that an be onstruted asfollows. Take a deomposition M in S4 with the additional propertythat two pairs of two of the four ri 's are equal. (e.g. r1 = r2 andr3 = r4). Let r be the sum of these two values. Add two opies ofthe fator Kr+1,r+1 to the deomposition.TheoremFor n ≥ 4, D (6;Kn)≥ 2n−2.Allan Bikle The k-Cores of a Graph



Bounds for k=5 and 6Proof.This onstrution has ∑6i=1D (Gi ) = 53n−2+2( n6)= 2n−2 for anyorder that it an attain. The proof of the Two Fator Theoremshows that a deomposition in Sk has order n = (k−1)∑ ri + (k2).For k = 4, this gives n = 3∑ ri +6. To satisfy the property in theonstrution, all the ri 's must be even, and any nonnegative evenr = 4s an be attained. Hene for eah positive order n = 12s+6there is a deomposition in S∗6 with this order. Suessively deletingverties ontained in exatly two fators from suh a deompositionprovides deompositions attaining the bound when 4≤ n ≤ 6,12≤ n ≤ 18, and n ≥ 20. Joining a vertex to eah of the twodisjoint fators when n = 12s+6 works for n ∈ {7,19}. Now
{2 [K4] ,4 [C4]} works for n = 8 and {3 [K4] ,3 [K3,3]} works forn = 10. Joining a vertex to disjoint fators in these last two worksfor n ∈ {9,11}. Allan Bikle The k-Cores of a Graph



Bounds for k=5 and 6
ConjetureFor n ≥ 4, D (6;Kn) = 2n−2.The best known upper bound, due to Furedi et al says thatD (6;Kn)≤ 52n− 72 .The onstrutions that we have seen so far start with a smalldeomposition and 'expand' it to a bigger one. In some ases,this proess an be generalized.

Allan Bikle The k-Cores of a Graph



Expanded ConstrutionsTheoremSuppose there is a k-deomposition of Kn into regular subgraphsand ∑ki=1D (Gi ) =  (n−1). Then there are in�nitely many otherk-deompositions with order n′ and ∑ki=1D (Gi ) =  (n′−1).Proof.Let r = n−1. Let M be a deomposition of Krt+1 into r t-regularspanning fators, where t is even if r is even. Form ak-deomposition M ′ with order n′ by replaing eah vertex of Knwith a opy of M so that if vertex v has degree di in Gi , then di ofthe r fators are merged together. Finally, join the orrespondingfators in di�erent opies of M.If the fator Gi has degree di in Kn, then the fator G ′i has degreedi (rt+1)+di t. Now sine ∑ki=1di =  (n−1) and n′ = n (rt+1),
∑ki=1 (di (rt+1)+di t) = (rt+1+ t)∑di = (rt+1+ t) (n−1)
=  [n (rt+1)−1+ t (n−1− r)] =  (n′−1).Allan Bikle The k-Cores of a Graph



Expanded ConstrutionsWe now onsider a number of deompositions that an beexpanded to in�nite families via the previous theorem.Deompose Kn into k =
(n2) K2's. Then

∑ki=1D (Gi ) = (n2)= n2 (n−1) = 1+√1+8k4 (n−1). Thus thissum an be ahieved for in�nitely many orders whenever k is atriangular number.Deompose Kn into K3's, whih an our whenever n≡ 1 or 3mod 6. Suh a deomposition has k = 13(n2)= n(n−1)6 triangles,so ∑ki=1D (Gi ) = 2n(n−1)6 = n3 (n−1) = 1+√1+24k6 (n−1).In partiular, onsider k = 7. Let H be an r -regular graph oforder 3r +1. Let G = H+H+H. Then G is 7r +2-regular,and 7 opies of G form a deomposition of ordern = 7(3r +1) = 21r +7, so n−13 = 7r +2. Then
∑7i=1D (Gi ) = 7(7r +2) = 73 (n−1). This onstrution showsthat D (7;Kn)≥ ⌊73 (n−1)⌋ for n = 7(3r +1).Allan Bikle The k-Cores of a Graph



Expanded ConstrutionsDeompose Kn into K4's, whih an our whenever n ≡ 1 or4 mod 12 [Hanani 1961℄. Suh a deomposition hask = 16(n2)= n(n−1)12 K4's, so
∑ki=1D (Gi ) = 3n(n−1)12 = n4 (n−1) = 1+√1+48k8 (n−1).Deompose Kn into K5's, whih an our whenever n ≡ 1 or5 mod 20 [Hanani 1975℄. Suh a deomposition hask = 110(n2)= n(n−1)20 K5's, so
∑ki=1D (Gi ) = 4n(n−1)20 = n5 (n−1) = 1+√1+80k10 (n−1).Let n = p2+p+1, where p is a prime power. Then there is aprojetive plane with n points and n lines, whih orrespond toverties and fators of a deomposition. Then ∑ki=1D (Gi) =kp = kpk−1 (n−1) = p2+p+1p+1 (n−1) = (−1+√4k−3)k2(k−1) (n−1).Let k [G ] mean that fator G ours k times in adeomposition. Allan Bikle The k-Cores of a Graph



Expanded Construtionsk ∑D (Gi) deomposition2 n−1 {2 [K1]}3 32 (n−1) {3 [K2]}4 53 (n−1) {K3,3 [K2]}5 95 (n−1) {4 [K3] ,3K2}6 2(n−1) {6 [K2]}7 73 (n−1) {7 [K3]}8 94 (n−1) {K3,7 [K2]}9 125 (n−1) {3 [K3] ,6 [K2]}10 52 (n−1) {10 [K2]}11 197 (n−1) {8 [K3] ,2 [K2] ,2K2}12 3(n−1) {12 [K3]}13 134 (n−1) {13 [K4]}14 258 (n−1) {11 [K3] ,3 [K2]}15 3(n−1) {15 [K2]}16 175 (n−1) {K5,15 [K3]}20 4(n−1) {20 [K4]}21 215 n 1 21 K530 5 n 1 30 K5Allan Bikle The k-Cores of a Graph



Expanded ConstrutionsThere is another way to generate deompositions that arebetter for some orders. If a deomposition has
∑ki=1D (Gi ) =  (n−1), then some fator Gi hasD (Gi )≤ k (n−1). Generalizing this, we have the following.TheoremIf there is a deomposition of Kn with ∑ki=1D (Gi ) =  (n−1), thengiven 0≤ p ≤ k−1, there is a deomposition of Kn with

∑k−pi=1 D (Gi )≥  k−pk (n−1).Furedi et al also proved the general upper bound that for allpositive integers n and k , D (k ;Kn)≤√k ·n. This is notattained for any values of n and k . Using essentially the sameapproah, this an be strengthened to a sharp bound.Allan Bikle The k-Cores of a Graph



A General Upper BoundTheoremFor all positive integers n and k, we haveD (k ;Kn)≤− k2 +√k24 + kn (n−1). This is an equality exatlywhen there is a deomposition of Kn into k liques of equal size.Proof.For a k-deomposition, let di = D (Gi) and F = ∑ Ĉ (Gi). Thenm (Gi )≥ (di+12 ). Nown (n−1)2 =

(n2)≥
k
∑i=1(di +12 )

=
12 k

∑i=1(d2i +di)≥ 12(F 2k +F) .The �rst inequality is attained exatly when all the fators areliques, and the seond is attained exatly when all the liques havethe same size. Hene kn (n−1)≥ F 2+ kF , soF 2+ kF − kn (n−1)≤ 0, and F ≤− k2 +√k24 + kn (n−1).Allan Bikle The k-Cores of a Graph



A General Upper Bound
We an obtain the suessively simpler but weaker formulasD (k ;Kn)≤− k2 +√k24 + kn (n−1)<√kn (n−1)<√k (n− 12)<√k ·n as orollaries. The last is the boundreported by Furedi et al.A deomposition of Kn into k liques of equal size is a blokdesign. In partiular, it is a(n,k , k+√k2+4kn(n−1)2n ,

12 +√14 + n(n−1)k ,1)-design. Hene theprevious result will attain equality whenever suh a designexists.
Allan Bikle The k-Cores of a Graph



A General Upper Bound
CorollaryWe have1. D ((n2);Kn)= (n2) for n ≥ 22. D (n(n−1)6 ;Kn)= n(n−1)3 for n ≡ 1 or 3 mod 63. D (n(n−1)12 ;Kn)= n(n−1)4 for n ≡ 1 or 4 mod 124. D (n(n−1)20 ;Kn)= n(n−1)5 for n ≡ 1 or 5 mod 205. D (n;Kn) = (−1+√4n−3)n2 for n = p2+p+1, where p is a primepower.

Allan Bikle The k-Cores of a Graph



Thank You!
Thank you!For more information, seeA. Bikle, Nordhaus-Gaddum Theorems for k-Deompositions,Congr. Num. 211 (2012) 171-183.Z. Furedi, A. Kostohka, M. Stiebitz, R. Skrekovski, and D. West,Nordhaus-Gaddum-type theorems for deompositions into manyparts. J. Graph Theory 50 (2005), 273-292.
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