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The Pythagorean Theorem

The Pythagorean Theorem is a basic fact about geometry.

[Pythagorean Theorem] If a right triangle has legs with lengths a
and b and hypotenuse with length c, then a® + b = c2.
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The Pythagorean Theorem

a C b
=]
B
b
D b
3
] .y a

Compute the area two ways.
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The Pythagorean Theorem

a C b
=]
B
b
D b
3
] .y a

Compute the area two ways.
(a+b)* =4 (3ab) +c?
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The Pythagorean Theorem

a C b
=]
B
b
D b
3
] .y a

Compute the area two ways.
(a+b)* =4 (3ab) + c?
a’ 4 2ab+ b? = 2ab + ¢?
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The Pythagorean Theorem

a C b
=]
B
b
D b
3
] .y a

Compute the area two ways.
(a+b)* =4 (3ab) + c?

a’ 4 2ab+ b? = 2ab + ¢?
a’+b% = c?
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The Pythagorean Theorem

(]

There are many proofs of the Pythagorean Theorem.

@ One book contains 370 proofs-perhaps the most for any
theorem.

(]

(This raises the question of when two proofs should be
considered distinct.)

It is possible for the numbers a, b, and c to all be integers.
Example: 3% +42 =52

Definition

A triple of integers (a,b,c) with a®> + b? = c? is called a
Pythagorean Triple.
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@ The Pythagorean Theorem is named for Pythagoras, in ancient
Greece.

@ Methods for generating such triples have been studied in many
cultures, beginning with the Babylonians.

@ They were later studied by the ancient Greek, Chinese, and
Indian mathematicians.

@ An application of Pythagorean triples is in homework problems
where the author wants the calculations to work out simply.
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Trivial Cases

There are some trivial cases

We see (0, b,b) is a Pythagorean triple, since 0% + b? = b?.

If a2+ b2 = 2, then (£a)® 4 (£b)? = (+c)>.

Hence we typically require that a,b, and c be positive integers.
If a2+ b2 = 2, then (ka)®+ (kb)? = (kc)?, so (ka, kb, kc) is a
Pythagorean triple.

e © ¢ ¢ ¢

Thus if a, b, and ¢ have a common factor, it can be divided
out to obtain a smaller Pythagorean triple.

Definition

A Pythagorean triple where a, b, and c have no common factor is
called a primitive Pythagorean triple.
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Finding a Pattern

@ The most famous Pythagorean triple is (3,4,5).
@ The next most famous Pythagorean triple is (5,12,13).
@ Another common Pythagorean triple is (7,24,25).

@ Do you see a pattern?
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Finding a Pattern

@ Start with an odd positive integer.

@ Square it, and divide the square into two integers that differ by
one.

@ This produces a Pythagorean triple.
o Algebraically, for n =2k +1,

n”?—1 n?+1
n? b
2 2

is a Pythagorean triple. This is easily verified.
o Thus (9,40,41), (11,60,61), (13,84,85), (15,112,113),
(17,144,145), ... are Pythagorean triples.

@ | first discovered this pattern (without proof) as a
middle-grade student.

@ However, not all Pythagorean triples satisfy this pattern!
@ Example: (8,15,17).

Allan Bickle Fun With Pythagorean Triples



A General Solution

(]

Can we find a general solution that produces all primitive
Pythagorean triples?

A few observations:
a and b cannot both be even, since then ¢ would be even also.
An even square equals 0 (mod 4), since (2k)* = 4k2.

e © ¢ ¢

An odd square equals 1 (mod 4), since
(2k +1)? = 4k2 + 4k +1.

@ a and b cannot both be odd, since then ¢ would equal 2 (mod
4).

@ Thus let a be even and b be odd, so ¢ must be odd.
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A General Solution

Try some algebra.
a® +b? = c?

=Cc —a
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A General Solution

Try some algebra.
a® +b? = c?

b?> = (c+a)(c—a)
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A General Solution

Let €2 = (reduced). Then 52 = 2.
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A General Solution

Let €2 = (reduced). Then 52 = 2.

Adding, we find
so
c m*+n?

Similarly, subtracting yields
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A General Solution

Let €2 = (reduced). Then 52 = 2.
Adding, we find

c m n m? + n?
2— = — —_— =
b n m mn
S0
c m*+n?
b 2mn
Similarly, subtracting yields
a_ m?—n?
b 2mn

We would like to equate numerators and denominators. Since the
left sides are reduced, we need the right sides reduced. Thus we
need m and n to have opposite parity. Note also that if m and
m?+ n? had a common factor, then so would m and n. The other
cases are similar.

Allan Bickle Fun With Pythagorean Triples



Euclid's Formula

Putting this all together, we have

Theorem

All primitive Pythagorean triples (a, b, c) with a®> 4+ b? = c? are

given by
a = m?—n?
b = 2mn
c = m? + n?

where m > n >0, m and n are relatively prime, and m and n have
opposite parity.

It is easy to check that this gives a Pythagorean triple, as

2+ b= (m2 — n2)2 + (2mn)2 = (m2 + n2)2 =c?
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Pythagorean Triples with Small Lengths

Figure : Source: Wikipedia
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Factors in Pythagorean Triples

What numbers can be factors of a, b, and ¢?

Exactly one of a and b is divisible by three.

Proof.

If both were divisible by three, then ¢ would be also.

If neither are divisible by three, then they equal one or two mod 3.
(3k+1)* =9k? +6k+1

(3k+2)> =9k?+ 12k + 4

Thus a% and b? both equal 1 mod 3, so ¢ =2 mod 3, which is
impossible. O

@ Exactly one of a and b is divisible by 4.
@ Exactly one of a, b, and c is divisible by 5.
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Numbers in Pythagorean Triples

What numbers can be contained in Pythagorean triples?

An integer r > 1 is a leg of some primitive Pythagorean triple <=
r#2 (mod 4).

oot |
( )

Proof.

(<) Let r be odd. Then (r, ’22_1, ’2;1 is a Pythagorean triple. It
is primitive since if p divides r, p does not divide r+1 or r —1.

Let r=4k. Then (4k2 — 1,4k, 4k% + 1) is a Pythagorean triple
which is primitive since if p divides 2k, it does not divide 2k +1 or
2k —1.

(=) Let r=2 (mod 4). Then n is even, but not divisible by 4.
Then ris not a, so if it is b, then r = 2mn. But one of m and n are
even, so r is not b either. O

-

Thus 6, 10, 14, ... are not legs of any primitive Pythagorean triple.
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Fermat's Theorem

To determine whether an integer can be a hypotenuse of a
Pythagorean triple, we need another theorem first.

[Fermat’s Theorem on the Sums of Squares| The prime p is the sum
of two integer squares, p=a’>+b> <= p=2 or p=1 (mod 4).

o For example, 2=1+1,5=4+1,13=90+4,17=16+1,
29=25+4,37=36+1, and 41 =25+ 16.

@ However, 3, 7, 11, 19, 23, 31, 43, ... are not sums of two
squares.
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Fermat's Theorem

We need a corollary of this theorem.

Let n=2kpat...par qf‘ ---gb be a positive integer where the
factors are all primes and p; =1 (mod 4) and q; =3 (mod 4).
Then n = A2+ B2 < each b; is even. In this case, n can be
represented as a sum of squares in 4(ay+1)---(a, +1) ways.

@ For example, 656 =5-13 =64+ 1 =49+ 16. Interchanging and
allowing negatives produces the 16 possibilities.

@ These results can be proved using Gaussian integers, which we
will not examine in this talk.
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Numbers in Pythagorean Triples

An integer r > 1 is the hypotenuse of some primitive Pythagorean
triple <=-any prime factor p of r satisfies p =1 (mod 4).

Proof

(<) By Corollary 8, r can be expressed as a sum of squares,

r = m?+ n?. The facts that m > n >0, m and n are relatively
prime, and m and n have opposite parity can be checked using the
proof of Corollary 8.

(=) Assume p # 1 (mod 4). If p=2, then p does not divide n,
since n is odd. If p=3 (mod 4), then by Corollary 8, p? divides n.
But p—"2 can be expressed as a sum of squares the same number of

| A\

ways, so if 2 = m? + n?, then n = (pm)?+ (pn)°. Thus the triple
is not primitive, so p does not divide n. O

-

Thus 65 = 5 13 is the hypotenuse of (63,16, 65) but 11 =4-2+3
and 49 ar he hvp fa iple.
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Enumerating Pythagorean Triples

Let r be an integer, r # 2 (mod 4), with k distinct prime factors.
Then r is a leg of 2k~ different primitive Pythagorean triples.

Let r be even, so 4 divides n. Then r =2mn, and one of m and n is
even, so 2 divides mn. Thus mn has the same number of distinct
prime factors as r. Now r = 2"pi’1 ---p2r. We want all possible
factorizations of 5 into m and n, which are relatively prime. Thus if
pi divides m, so does pi". Since there are k distinct factors, there
are 2¥ possibilities. But every possible factorization is counted
twice, so there are 2¥~1 ways that r occurs in Pythagorean triples.
Let r be odd. Then r = m?—n? = (m+n)(m—n). Thus m+n
and m— n are odd. If they had a common odd factor, it would
divide their sum 2m and difference 2n, a contradiction. Thus we
want all possible factorizations of r into two relatively prime

factors. As with the even case. there are 2K~1 ways to do this. [
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Enumerating Pythagorean Triples

For example, 60 = 223-5 is a leg in four triples: (11,60,61),
(91,60,109), (221,60,229), and (899,60,901).

Let r be an integer with k distinct prime factors such that any
prime factor p of r satisfies p=1 (mod 4). Then r is the
hypotenuse of 2k~ different primitive Pythagorean triples.

Thus 65 =5-13 is the hypotenuse of (63,16,65) and (33,56,65).

Corollary

An integer occurs r times as a leg or hypotenuse of a primitive
Pythagorean triple <= r = 2k~ for some integer k.

No number occurs infinitely many times as a leg or hypotenuse of a
primitive Pythagorean triple.

For all N, there exists r such that r occurs more than N times as a
leg or hypotenuse of a primitive Pythagorean triple.

'
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Enumerating Pythagorean Triples

Furthermore,

Corollary

The smallest even number to occur as a leg of a primitive
Pythagorean triple 2K=1 times is 2 times the product of the first k
distinct primes.

The smallest odd number to occur as a leg of a primitive
Pythagorean triple 2~ times is the product of the first k distinct
odd primes.

The smallest number to occur as the hypotenuse of a primitive
Pythagorean triple 21 times is the product of the first k distinct
primes that are congruent to 1 (mod 4).
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Enumerating Pythagorean Triples

What about non-primitive triples?

Ak

The number of ways that an integer r = 2J p2* Sos Bl
of (not-necessarily primitive) Pythagorean triples is

{ (%(H(Qa,-—l—l)— ) rodd
| _

occurs as a leg

—3)M(ai+1)—3 reven

@ For example, 15 =35 is a leg of four triples: 5(3,4,5),
3(5,12,13), (15,8,17), and (15,112,113).

@ For example, 12 =223 is a leg of four triples: 3(3,4,5),
4(3,4,5), (5,12,13), and (35,12,37).
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Enumerating Pythagorean Triples

ag by

The number of ways that an integer r = 2J p* Y ~qlb’
where the factors are all primes and pj =1 (mod 4) and q; =3
(mod 4) occurs as the hypotenuse of (not-necessarily primitive)
Pythagorean triples is ([ (2a; +1) —1).

@ For example, 65 =513 is the hypotenuse of four triples:
13(3,4,5), 5(5,12,13), (63,16,65) and (33,56,65).

@ The proofs of the previous two theorems analyze the number
of ways to distribute the possible factors.
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Triples and Matrices

Consider a Pythagorean triple as a column vector.
Start with (3,4,5) and multiply by the following matrices

1 -2 2 1 2 2 -1 2 2
A={2 -1 2 |,B=|2 12|, C=|-212
2 -2 3 2 2 3 -2 2 3
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Triples and Matrices

Consider a Pythagorean triple as a column vector.
Start with (3,4,5) and multiply by the following matrices

A

NN NN

1 =2
2 -1
2 =2

2
2 |, B
3

(G2~ B OV) 1

B W (2l ~ RGN

5

1 2 2
2 1 2
2 2 3
5

-1 2 2
-2 1 2
-2 2 3

, C

1
1
21
20
29
15
8
17

2
3

These are all primitive Pythagorean triples!
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Triples and Matrices

It is possible to generate all primitive Pythagorean triples this way.

(3,4,5)

(5,12,13)

(7,24,25)

(9,40,41)

(105,88,137)

(91,60, 109)

(55,48,73)

(105,208,233)

(297,304,425)

(187,84,205)

(45,28,53)

(95,168,193)

(207,224,305)

(117,44,125)

(21,20,29)

(39,80,89)

(57,176,185)

(377,336,505)

(299,180,349)

(119,120,169)

(217,456,505)

(697,696,985)

(495,220,509)

(77,36,85)

(175,288,337)

(319,360,481)

(165,52,173)

(15,8,17)

(33,56,65)

(51,140, 149)

(275,252,373)

(209,120, 24T)

(65,72,97)

(115,252,277)

(403,396,565)

(273,136,305)

(35,12,37)

Allan Bickle

(85,132,157)

(133,156,205)

63.16.65
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Triples and Matrices

Note that special cases are produced by multiplying by only one of
A, B, or C.

o (3,4,5) Ak: (r,’zT_l,’szl), r=2k+1

(3,4,5)BK: b—a=(—1)
(3,4,5) Ck: (4k*—1,4k,4k>+1)
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Triples and Matrices

Note that special cases are produced by multiplying by only one of
A, B, or C.

® 345

) Ak: (r,’z_l i),r:2k—|—1
(345)Bk b—a=(-1)
(3,4,5) Ck: (4k?—1,4k,4k% +1)
To check that a ythagorean triple is produced by A, we see

-2 2 a—2b+2c
-1 2 =| 2a—b+2c
-2 3 2a—2b-+3c

(a—2b—i—2c (2a—b+2c)

(a +4b? +4c? —4ab+ dac — 8bc) +

(42® + b% +4c? — 4ab+8ac — 4bc)
= b5a% +5b? +8c? — 8ab+ 12ac — 12bc (since a® + b* = c?)
— 42 +4b% +9c2 — 8ab+12ac — 12bc = (2a— 2b+3¢)?
Matrices B and C can be similarly checked.
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Triples and Matrices

Why is the triple primitive?

(]

@ The three matrices are unimodular—that is, they have integer
entries and determinant £1.

@ Thus their inverses are also unimodular.
o Now if (d,e,f) = A(a, b,c), then (a,b,c) = A~1(d,e,f).

@ Thus if d, e, and f have a common factor, then a, b, and ¢
must also.
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Triples and Matrices

Why is the triple primitive?

(]

@ The three matrices are unimodular—that is, they have integer
entries and determinant £1.

@ Thus their inverses are also unimodular.

o Now if (d,e,f) = A(a, b,c), then (a,b,c) = A~1(d,e,f).

@ Thus if d, e, and f have a common factor, then a, b, and ¢
must also.

@ To show that each triple is obtained only once, we show that
there is only one path back to (3,4,5).

@ For each triple, only one of the three inverse matrices A~1,
B!, and C~! yields all positive entries and a smaller
hypotenuse.

@ By induction, there is only one path from the triple to (3,4,5),
and hence the reverse is also true.
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Generalizations

@ There are many generalizations of Pythagorean triples.

@ Pythagorean Quadruples: a° + b? + c? = d?

o Examples:

e (1,2,2,3), since 12 +22 422 =32

e (2,3,6,7), since 2° 4 32 + 62 = 72

@ These are all given by the formula
(m*+n?—p?— q2)2 + (2mq+2np)* + (2ng — 2mp)? =
(m2+n2+p2+q2)2_

@ This can be generalized to Pythagorean n-tuples.
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Heronian Triples

@ Heron’s formula for the area of a triangle says that
A=./s(s—a)(s—b)(s—c).

@ A Heronian triangle is one for which a, b, and ¢ and A are
integers.

@ Any Pythagorean triple is a Heronian triple, since A= %ab,
and one of a and b must be even.

However, there are other examples:

(4, 13, 15) with area 24

(3, 25, 26) with area 36

(7, 15, 20) with area 42

(6, 25, 29) with area 60

Heron’s formula requires that (a% + b% + c?)2—2(a* + b* + c*)
be a nonzero perfect square divisible by 16.

¢ © ¢ ¢ ¢ ¢
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Fermat's Last Theorem

@ In 1637, Pierre de Fermat asserted Fermat’s Last Theorem:

[Fermat’s Last Theorem| There are no positive integer solutions
(x,y,2) to

for any integer n > 2.

@ Fermat claimed to have proven this theorem, but that the
margin of the book he was reading was too small to contain
the proof.

@ For 358 years no proof was found. Many mathematicians tried
to find a proof, whether Fermat's or something else.

@ For a long time this was perhaps the most famous unsolved
problem in mathematics.
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Fermat's Last Theorem

@ Many partial results were obtained, and the result was proved
for specific values of n. However, a full proof remained elusive.

@ This quest motivated much of the development of the subject
of number theory.

@ Finally in 1995, after seven years of work, British
mathematician Andrew Wiles announced a proof.

@ His paper was 125 pages long, and employed very difficult
mathematics.
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Fermat's Last Theorem

@ Many partial results were obtained, and the result was proved
for specific values of n. However, a full proof remained elusive.

@ This quest motivated much of the development of the subject
of number theory.

@ Finally in 1995, after seven years of work, British
mathematician Andrew Wiles announced a proof.

@ His paper was 125 pages long, and employed very difficult
mathematics.

@ This talk is definitely too small to contain Wiles' proof!
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Thank You!

Sources:
@ An Introduction to Number Theory by Harold M. Stark

@ Abstract Algebra, 3rd Ed. by Dummit and Foote
o Wikipedia
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