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The Pythagorean Theorem
The Pythagorean Theorem is a basi
 fa
t about geometry.Theorem[Pythagorean Theorem℄ If a right triangle has legs with lengths aand b and hypotenuse with length 
, then a2+b2 = 
2.
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The Pythagorean Theorem

Compute the area two ways.
(a+b)2 = 4(12ab)+ 
2a2+2ab+b2 = 2ab+ 
2a2+b2 = 
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The Pythagorean TheoremThere are many proofs of the Pythagorean Theorem.One book 
ontains 370 proofs-perhaps the most for anytheorem.(This raises the question of when two proofs should be
onsidered distin
t.)It is possible for the numbers a, b, and 
 to all be integers.Example: 32+42 = 52De�nitionA triple of integers (a,b,
) with a2+b2 = 
2 is 
alled aPythagorean Triple. Allan Bi
kle Fun With Pythagorean Triples



History
The Pythagorean Theorem is named for Pythagoras, in an
ientGree
e.Methods for generating su
h triples have been studied in many
ultures, beginning with the Babylonians.They were later studied by the an
ient Greek, Chinese, andIndian mathemati
ians.An appli
ation of Pythagorean triples is in homework problemswhere the author wants the 
al
ulations to work out simply.
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Trivial CasesThere are some trivial 
asesWe see (0,b,b) is a Pythagorean triple, sin
e 02+b2 = b2.If a2+b2 = 
2, then (±a)2+(±b)2 = (±
)2.Hen
e we typi
ally require that a,b, and 
 be positive integers.If a2+b2 = 
2, then (ka)2+(kb)2 = (k
)2, so (ka,kb,k
) is aPythagorean triple.Thus if a, b, and 
 have a 
ommon fa
tor, it 
an be dividedout to obtain a smaller Pythagorean triple.De�nitionA Pythagorean triple where a, b, and 
 have no 
ommon fa
tor is
alled a primitive Pythagorean triple.Allan Bi
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Finding a Pattern
The most famous Pythagorean triple is (3,4,5).The next most famous Pythagorean triple is (5,12,13).Another 
ommon Pythagorean triple is (7,24,25).Do you see a pattern?
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Finding a PatternStart with an odd positive integer.Square it, and divide the square into two integers that di�er byone.This produ
es a Pythagorean triple.Algebrai
ally, for n = 2k+1,
(n, n2−12 ,

n2+12 )is a Pythagorean triple. This is easily veri�ed.Thus (9,40,41), (11,60,61), (13,84,85), (15,112,113),
(17,144,145), ... are Pythagorean triples.I �rst dis
overed this pattern (without proof) as amiddle-grade student.However, not all Pythagorean triples satisfy this pattern!Example: (8,15,17).Allan Bi
kle Fun With Pythagorean Triples



A General SolutionCan we �nd a general solution that produ
es all primitivePythagorean triples?A few observations:a and b 
annot both be even, sin
e then 
 would be even also.An even square equals 0 (mod 4), sin
e (2k)2 = 4k2.An odd square equals 1 (mod 4), sin
e
(2k+1)2 = 4k2+4k+1.a and b 
annot both be odd, sin
e then 
 would equal 2 (mod4).Thus let a be even and b be odd, so 
 must be odd.Allan Bi
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A General Solution
Try some algebra. a2+b2 = 
2b2 = 
2− a2b2 = (
+ a) (
− a)
+ ab =

b
− a
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A General SolutionLet 
+ab = mn (redu
ed). Then 
−ab = nm .Adding, we �nd 2
b =
mn +

nm =
m2+n2mnso 
b =

m2+n22mnSimilarly, subtra
ting yields ab =
m2−n22mnWe would like to equate numerators and denominators. Sin
e theleft sides are redu
ed, we need the right sides redu
ed. Thus weneed m and n to have opposite parity. Note also that if m andm2+n2 had a 
ommon fa
tor, then so would m and n. The other
ases are similar. Allan Bi
kle Fun With Pythagorean Triples
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Eu
lid's FormulaPutting this all together, we haveTheoremAll primitive Pythagorean triples (a,b,
) with a2+b2 = 
2 aregiven by a = m2−n2b = 2mn
 = m2+n2where m > n > 0, m and n are relatively prime, and m and n haveopposite parity.It is easy to 
he
k that this gives a Pythagorean triple, asa2+b2 = (m2−n2)2+(2mn)2 = (m2+n2)2 = 
2Allan Bi
kle Fun With Pythagorean Triples



Pythagorean Triples with Small Lengths

Figure : Sour
e: WikipediaAllan Bi
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Fa
tors in Pythagorean TriplesWhat numbers 
an be fa
tors of a, b, and 
?TheoremExa
tly one of a and b is divisible by three.Proof.If both were divisible by three, then 
 would be also.If neither are divisible by three, then they equal one or two mod 3.
(3k+1)2 = 9k2+6k+1
(3k+2)2 = 9k2+12k+4Thus a2 and b2 both equal 1 mod 3, so 
2 ≡ 2 mod 3, whi
h isimpossible.Exa
tly one of a and b is divisible by 4.Exa
tly one of a, b, and 
 is divisible by 5.Allan Bi
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Numbers in Pythagorean TriplesWhat numbers 
an be 
ontained in Pythagorean triples?TheoremAn integer r > 1 is a leg of some primitive Pythagorean triple ⇐⇒r 6= 2 (mod 4).Proof.
(⇐) Let r be odd. Then (r , r2−12 ,

r2+12 ) is a Pythagorean triple. Itis primitive sin
e if p divides r , p does not divide r +1 or r −1.Let r = 4k . Then (4k2−1,4k ,4k2+1) is a Pythagorean triplewhi
h is primitive sin
e if p divides 2k , it does not divide 2k+1 or2k−1.
(⇒) Let r ≡ 2 (mod 4). Then n is even, but not divisible by 4.Then r is not a, so if it is b, then r = 2mn. But one of m and n areeven, so r is not b either.Thus 6, 10, 14, ... are not legs of any primitive Pythagorean triple.Allan Bi
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Fermat's TheoremTo determine whether an integer 
an be a hypotenuse of aPythagorean triple, we need another theorem �rst.Theorem[Fermat's Theorem on the Sums of Squares℄ The prime p is the sumof two integer squares, p = a2+b2 ⇐⇒ p = 2 or p ≡ 1 (mod 4).For example, 2= 1+1, 5= 4+1, 13= 9+4, 17= 16+1,29= 25+4, 37= 36+1, and 41= 25+16.However, 3, 7, 11, 19, 23, 31, 43, ... are not sums of twosquares.
Allan Bi
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Fermat's TheoremWe need a 
orollary of this theorem.CorollaryLet n = 2kpa11 · · ·parr qb11 · · ·qbss be a positive integer where thefa
tors are all primes and pi ≡ 1 (mod 4) and qi ≡ 3 (mod 4).Then n = A2+B2 ⇐⇒ ea
h bi is even. In this 
ase, n 
an berepresented as a sum of squares in 4(a1+1) · · · (ar +1) ways.For example, 65= 5 ·13= 64+1= 49+16. Inter
hanging andallowing negatives produ
es the 16 possibilities.These results 
an be proved using Gaussian integers, whi
h wewill not examine in this talk.Allan Bi
kle Fun With Pythagorean Triples



Numbers in Pythagorean TriplesTheoremAn integer r > 1 is the hypotenuse of some primitive Pythagoreantriple ⇐⇒any prime fa
tor p of r satis�es p ≡ 1 (mod 4).Proof.
(⇐) By Corollary 8, r 
an be expressed as a sum of squares,r =m2+n2. The fa
ts that m > n > 0, m and n are relativelyprime, and m and n have opposite parity 
an be 
he
ked using theproof of Corollary 8.
(⇒) Assume p 6= 1 (mod 4). If p = 2, then p does not divide n,sin
e n is odd. If p = 3 (mod 4), then by Corollary 8, p2 divides n.But np2 
an be expressed as a sum of squares the same number ofways, so if np2 =m2+n2, then n = (pm)2+(pn)2. Thus the tripleis not primitive, so p does not divide n.Thus 65= 5 ·13 is the hypotenuse of (63,16,65), but 11= 4 ·2+3and 49= 72 are not the hypotenuses of any primitive triple.Allan Bi
kle Fun With Pythagorean Triples



Enumerating Pythagorean TriplesTheoremLet r be an integer, r 6= 2 (mod 4), with k distin
t prime fa
tors.Then r is a leg of 2k−1 di�erent primitive Pythagorean triples.Proof.Let r be even, so 4 divides n. Then r = 2mn, and one of m and n iseven, so 2 divides mn. Thus mn has the same number of distin
tprime fa
tors as r . Now r = 2kpa11 · · ·parr . We want all possiblefa
torizations of r2 into m and n, whi
h are relatively prime. Thus ifpi divides m, so does paii . Sin
e there are k distin
t fa
tors, thereare 2k possibilities. But every possible fa
torization is 
ountedtwi
e, so there are 2k−1 ways that r o

urs in Pythagorean triples.Let r be odd. Then r =m2−n2 = (m+n)(m−n). Thus m+nand m−n are odd. If they had a 
ommon odd fa
tor, it woulddivide their sum 2m and di�eren
e 2n, a 
ontradi
tion. Thus wewant all possible fa
torizations of r into two relatively primefa
tors. As with the even 
ase, there are 2k−1 ways to do this.Allan Bi
kle Fun With Pythagorean Triples



Enumerating Pythagorean TriplesFor example, 60= 223 ·5 is a leg in four triples: (11,60,61),
(91,60,109), (221,60,229), and (899,60,901).TheoremLet r be an integer with k distin
t prime fa
tors su
h that anyprime fa
tor p of r satis�es p ≡ 1 (mod 4). Then r is thehypotenuse of 2k−1 di�erent primitive Pythagorean triples.Thus 65= 5 ·13 is the hypotenuse of (63,16,65) and (33,56,65).CorollaryAn integer o

urs r times as a leg or hypotenuse of a primitivePythagorean triple ⇐⇒ r = 2k−1 for some integer k.No number o

urs in�nitely many times as a leg or hypotenuse of aprimitive Pythagorean triple.For all N, there exists r su
h that r o

urs more than N times as aleg or hypotenuse of a primitive Pythagorean triple.Allan Bi
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Enumerating Pythagorean TriplesFurthermore,CorollaryThe smallest even number to o

ur as a leg of a primitivePythagorean triple 2k−1 times is 2 times the produ
t of the �rst kdistin
t primes.The smallest odd number to o

ur as a leg of a primitivePythagorean triple 2k−1 times is the produ
t of the �rst k distin
todd primes.The smallest number to o

ur as the hypotenuse of a primitivePythagorean triple 2k−1 times is the produ
t of the �rst k distin
tprimes that are 
ongruent to 1 (mod 4).Allan Bi
kle Fun With Pythagorean Triples



Enumerating Pythagorean TriplesWhat about non-primitive triples?TheoremThe number of ways that an integer r = 2jpa11 · · ·pakk o

urs as a legof (not-ne
essarily primitive) Pythagorean triples is
{ 12 (∏(2ai +1)−1) rodd

(j− 12)∏(2ai +1)− 12 reven .For example, 15= 3 ·5 is a leg of four triples: 5(3,4,5),3(5,12,13), (15,8,17), and (15,112,113).For example, 12= 223 is a leg of four triples: 3(3,4,5),4(3,4,5), (5,12,13), and (35,12,37).Allan Bi
kle Fun With Pythagorean Triples



Enumerating Pythagorean TriplesTheoremThe number of ways that an integer r = 2jpa11 · · ·pakk qb11 · · ·qbllwhere the fa
tors are all primes and pi ≡ 1 (mod 4) and qi ≡ 3(mod 4) o

urs as the hypotenuse of (not-ne
essarily primitive)Pythagorean triples is 12 (∏(2ai +1)−1).For example, 65= 5 ·13 is the hypotenuse of four triples:13(3,4,5), 5(5,12,13), (63,16,65) and (33,56,65).The proofs of the previous two theorems analyze the numberof ways to distribute the possible fa
tors.
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Triples and Matri
esConsider a Pythagorean triple as a 
olumn ve
tor.Start with (3,4,5) and multiply by the following matri
esA=





1 −2 22 −1 22 −2 3 

, B =





1 2 22 1 22 2 3 

, C =





−1 2 2
−2 1 2
−2 2 3 







1 −2 22 −1 22 −2 3 







345 

=





51213 







1 2 22 1 22 2 3 







345 

=





212029 







−1 2 2
−2 1 2
−2 2 3 







345 

=





15817 

These are all primitive Pythagorean triples!Allan Bi
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Triples and Matri
esIt is possible to generate all primitive Pythagorean triples this way.
(9,40,41)

(7,24,25) (105,88,137)
(91,60,109)

(105,208,233)
(5,12,13) (55,48,73) (297,304,425)

(187,84,205)
(95,168,193)

(45,28,53) (207,224,305)
(117,44,125)
(57,176,185)

(39,80,89) (377,336,505)
(299,180,349)
(217,456,505)

(3,4,5) (21,20,29) (119,120,169) (697,696,985)
(495,220,509)
(175,288,337)

(77,36,85) (319,360,481)
(165,52,173)
(51,140,149)

(33,56,65) (275,252,373)
(209,120,241)
(115,252,277)

(15,8,17) (65,72,97) (403,396,565)
(273,136,305)
(85,132,157)

(35,12,37) (133,156,205)
(63,16,65)Allan Bi
kle Fun With Pythagorean Triples



Triples and Matri
esNote that spe
ial 
ases are produ
ed by multiplying by only one ofA, B , or C .
(3,4,5)Ak :

(r , r2−12 ,
r2+12 ), r = 2k+1

(3,4,5)Bk : b− a= (−1)k
(3,4,5)C k :

(4k2−1,4k ,4k2+1)To 
he
k that a Pythagorean triple is produ
ed by A, we see




1 −2 22 −1 22 −2 3 







ab
 

=





a−2b+2
2a−b+2
2a−2b+3
 



(a−2b+2
)2+(2a−b+2
)2
=

(a2+4b2+4
2−4ab+4a
−8b
)+
(4a2+b2+4
2−4ab+8a
−4b
)

= 5a2+5b2+8
2−8ab+12a
−12b
 (sin
e a2+b2 = 
2)
= 4a2+4b2+9
2−8ab+12a
−12b
 = (2a−2b+3
)2Matri
es B and C 
an be similarly 
he
ked.Allan Bi
kle Fun With Pythagorean Triples
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Triples and Matri
esWhy is the triple primitive?The three matri
es are unimodular�that is, they have integerentries and determinant ±1.Thus their inverses are also unimodular.Now if (d ,e, f ) = A(a,b,
), then (a,b,
) = A−1 (d ,e, f ).Thus if d , e, and f have a 
ommon fa
tor, then a, b, and 
must also.To show that ea
h triple is obtained only on
e, we show thatthere is only one path ba
k to (3,4,5).For ea
h triple, only one of the three inverse matri
es A−1,B−1, and C−1 yields all positive entries and a smallerhypotenuse.By indu
tion, there is only one path from the triple to (3,4,5),and hen
e the reverse is also true.Allan Bi
kle Fun With Pythagorean Triples
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Generalizations
There are many generalizations of Pythagorean triples.Pythagorean Quadruples: a2+b2+ 
2 = d2Examples:
(1,2,2,3), sin
e 12+22+22 = 32
(2,3,6,7), sin
e 22+32+62 = 72These are all given by the formula
(m2+n2−p2−q2)2+(2mq+2np)2+(2nq−2mp)2 =
(m2+n2+p2+q2)2.This 
an be generalized to Pythagorean n-tuples.

Allan Bi
kle Fun With Pythagorean Triples



Heronian TriplesHeron's formula for the area of a triangle says thatA=
√s (s− a) (s−b)(s− 
).A Heronian triangle is one for whi
h a, b, and 
 and A areintegers.Any Pythagorean triple is a Heronian triple, sin
e A= 12ab,and one of a and b must be even.However, there are other examples:(4, 13, 15) with area 24(3, 25, 26) with area 36(7, 15, 20) with area 42(6, 25, 29) with area 60Heron's formula requires that (a2+b2+ 
2)2=2(a4+b4+ 
4)be a nonzero perfe
t square divisible by 16.Allan Bi
kle Fun With Pythagorean Triples



Fermat's Last TheoremIn 1637, Pierre de Fermat asserted Fermat's Last Theorem:Theorem[Fermat's Last Theorem℄ There are no positive integer solutions
(x ,y ,z) to xn+ yn = znfor any integer n > 2.Fermat 
laimed to have proven this theorem, but that themargin of the book he was reading was too small to 
ontainthe proof.For 358 years no proof was found. Many mathemati
ians triedto �nd a proof, whether Fermat's or something else.For a long time this was perhaps the most famous unsolvedproblem in mathemati
s.Allan Bi
kle Fun With Pythagorean Triples



Fermat's Last Theorem
Many partial results were obtained, and the result was provedfor spe
i�
 values of n. However, a full proof remained elusive.This quest motivated mu
h of the development of the subje
tof number theory.Finally in 1995, after seven years of work, Britishmathemati
ian Andrew Wiles announ
ed a proof.His paper was 125 pages long, and employed very di�
ultmathemati
s.This talk is de�nitely too small to 
ontain Wiles' proof!
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Thank You!
Sour
es:An Introdu
tion to Number Theory by Harold M. StarkAbstra
t Algebra, 3rd Ed. by Dummit and FooteWikipedia
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