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Introduction

De�nition

A graph G has a set of vertices and a set of edges. An edge is
two-element subset of the vertex set.
A graph class is a set of graphs.
The order n (G ) of a graph G is the number of vertices of G . The
size m (G ) of a graph G is the number of edges of G .

Many graph classes have sizes that are determined, or bounded
by, their orders. Some formulas occur repeatedly.

The k-tree size is m (G ) = k ·n (G )−
(k+1

2

)
.

n−1, 2n−3, 3n−6, 4n−10, ...

n−1: trees

2n−3: outerplanar graphs

3n−6: planar graphs
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Trees

De�nition

A tree is a connected graph that does not contain a cycle.

Proposition

Every nontrivial tree contains at least two leaves.

Proof.

If not, a maximal path could be extended to form a cycle.
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Trees

Theorem

A graph is a tree if and only if it can be constructed from K1 by

repeatedly applying the operation of adding a new vertex and

making it adjacent to one existing vertex.

Proof.

(⇐) K1 is a tree, and the operation keeps the graph connected and
acyclic. Thus any graph produced this way must be a tree.
(⇒) We use induction on n. The result is obvious when n = 1.
Assume that any tree of order n−1 can be constructed from K1

using the operation, and let T have order n > 1. Then T has a leaf
v , so T −v is a tree with order n−1. Thus T −v can be
constructed using the operation, so T can also.
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Trees

Theorem

A graph is a tree if and only if it can be constructed from K1 by

repeatedly applying the operation of adding a new vertex and

making it adjacent to one existing vertex.

Corollary

A tree with order n has size n−1.

Proof.

The operation adds an edge for each new vertex, and
m (K1) = 0.

There are several ways of generalizing trees. We generalize the
operation of adding one new vertex adjacent to one other
vertex.
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Cores

De�nition

The k-core of a graph G , is the maximal induced subgraph
H ⊆ G such that δ (G )≥ k , if it exists. A graph is k-core-free if it
does not contain a k-core. The core number of a vertex, C (v), is
the largest value for k such that v ∈ Ck(G ).

→ → →

0-core 1-core 2-core 3-core
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Cores

Cores were introduced by S. B. Seidman [1983] and have been
studied extensively in (Bickle [2010,2013]).

Seidman brie�y explores applications to social networks in his
paper.

Cores also have applications in computer science to network
visualization (ADBV [2006], Gaertler/Patrignani [2004]).

They also have applications to bioinformatics (ANKMSAWM
[2003], Bader/Hogue [2003], Wuchty/Almaas [2005]).

There is a simple algorithm for determining the k-core of a
graph, which we shall call the k-Core Algorithm.

Algorithm

(k-Core Algorithm) Input a graph G and integer k . Iterate the

step of deleting all vertices of degree less than k . Stop when there

are no more such vertices. If a graph remains, it is the k-core. If no

graph remains, G has no k-core.
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Cores

Theorem

Applying the k-Core Algorithm to graph G yields the k-core of G , if

it exists. That is, a vertex v is in the k-core of G if and only if it is

not deleted by the algorithm.

Proof.

(⇒) The vertices in the k-core all have at least k neighbors in the
k-core. None of these vertices will be deleted in the �rst iteration.
If none have been deleted after i iterations, none will be deleted by
the next iteration. Thus none will ever be wrongly deleted.
(⇐) The vertices not deleted by the algorithm all have degree at
least k in the graph produced by the algorithm. Thus they are all in
the k-core, so no vertices will be wrongly included.

Allan Bickle Graphs Classes With Size kn−
(k+1
2

)



Degeneracy

The k-Core Algorithm can be implemented in polynomial time.
(O

(
n2
)
time using an adjacency matrix, or O (m) time using

an edge list, which is better for sparse graphs).
We can de�ne a sequence of vertices based on the order that
they are deleted by the k-Core Algorithm. We may also wish
to construct a graph by successively adding vertices of
relatively small degree.

De�nition

A deletion sequence of a graph G is a sequence of its vertices
formed by iterating the operation of deleting a vertex of smallest
degree and adding it to the sequence until no vertices remain. A
construction sequence of a graph is the reversal of a
corresponding deletion sequence. A graph is k-degenerate if its
vertices can be successively deleted so that when deleted, each has
degree at most k . The degeneracy D (G ) of a graph G is the
smallest k such that it is k-degenerate.
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Degeneracy

Example. A deletion sequence of the graph below is
z , t, u, s, v , y , r , w , x . The graph has degeneracy 2.

r s t

w v u

x y z
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Degeneracy

The term k-degenerate was introduced in 1970 by Lick and
White; the concept has been introduced under other names
both before and since. As a corollary of Theorem 9, we have
the following min-max relationship.

Corollary

For any graph, its maximum core number is equal to its degeneracy.

Proof.

Let G be a graph with degeneracy D and maximum core number k .
By Theorem 9, since G has a k-core, it is not (k−1)-degenerate,
so k ≤ D. Since G has no k+1-core, it is k-degenerate, so
k = D.

The size of maximal k-degenerate graphs is a basic result.
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Degeneracy

Theorem

The size of a maximal k-degenerate with order n ≥ k is

k ·n−
(k+1

2

)
.

Proof.

If G is k-degenerate, then its vertices can be successively deleted so
that when deleted they have degree at most k . Since G is maximal,
the degrees of the deleted vertices will be exactly k until the
number of vertices remaining is at most k . After that, the n− j th

vertex deleted will have degree j . Thus the size m of G is

m = ∑
k−1
i=0

i +∑
n−1
i=k k

= k(k−1)
2

+k (n−k)

= k ·n+ k(k−1)
2
− 2k2

2

= k ·n−
(k+1

2

)
.

Allan Bickle Graphs Classes With Size kn−
(k+1
2

)



Degeneracy

Thus a k-degenerate graph is maximal if and only if it has size
k ·n−

(k+1

2

)
.

Example. The three maximal 2-degenerate graphs of order 5 are
shown below.

Corollary

Every graph with order n and size m ≥ (k−1)n−
(k
2

)
+1,

1≤ k ≤ n−1, has a k-core.

One class of maximal k-degenerate graphs is particularly
important.
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k-Trees

De�nition

A k-tree is a graph that can be formed by starting with Kk+1 and
iterating the operation of making a new vertex adjacent to all the
vertices of a k-clique of the existing graph. The clique used to start
the construction is called the root of the k-tree.

The graph below is a 2-tree. Any triangle could be the root.

tree = 1-tree = maximal 1-degenerate

k-trees ⊆ maximal k-degenerate graphs
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k-Trees

De�nition

A subdivision of an edge e = uv , deletes e and adds vertex w
and edges uw and wv . A graph H is a subdivision of a graph G
if it can be obtained by some number (perhaps zero) of subdivisions
of edges of G .

u

v

u

v

w→e

Theorem

(Bickle [2012]) A maximal k-degenerate graph is a k-tree if and

only if it contains no subdivision of Kk+2.
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k-Trees

Proof.

(⇒) Let G be a k-tree. Certainly Kk+1 contains no subdivision of
Kk+2. Suppose G is a counterexample of minimum order with a
vertex v of degree k . Then G −v is a k-tree with no subdivision of
Kk+2, so the subdivision in G contains v . But then v is not one of
the k+2 vertices of degree k+1 in the subdivision, so it is on a
path P between two such vertices. Let its neighbors on P be u and
w . But since the neighbors of v form a clique, uw ∈ G −v , so P
could avoid v , implying G −v has a subdivision of Kk+2. This is a
contradiction.

u

w

v

u

w

v
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k-Trees

Theorem

(Bickle [2012]) A maximal k-degenerate graph is a k-tree if and

only if it contains no subdivision of Kk+2.

Proof.

(⇐) (contrapositive) Let G be maximal k-degenerate and not a
k-tree. Since G is constructed beginning with a k-tree, for a given
construction sequence there is a �rst vertex in the sequence that
makes G not a k-tree. Let v be this vertex, and H be the maximal
k-degenerate subgraph induced by the vertices of the construction
sequence up to v . Then n (H)≥ k+3, dH (v) = k, v has
nonadjacent neighbors u and w , and H−v is a k-tree. Now there
is a sequence of at least two k+1-cliques starting with one
containing u and ending with one containing w , such that each pair
of consecutive k+1-cliques in the sequence overlap on a k-clique.
Then two of these cliques and a path through v produces a
subdivision of Kk+2.
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Planarity

De�nition

A plane drawing of a graph is a drawing in the plane that has no
crossings. A graph is planar if it has a plane drawing. A
nonplanar graph is not planar. The regions of a plane drawing are
the maximal pieces of the plane surrounded by edges and vertices.
The in�nite region is the exterior region. The boundary of a
region is the subgraph induced by the edges that touch it. The
length of a region is the length of a walk around it.

There is a basic relationship between the number of vertices,
edges, and regions of a planar graph.

Theorem

(Euler's Polyhedron Formula) For a connected planar graph with

order n, size m, and r regions, n−m+ r = 2.
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Planarity

Theorem

(Euler's Polyhedron Formula) For a connected planar graph with

order n, size m, and r regions, n−m+ r = 2.

Proof.

We use induction on m. For a connected graph G , m is minimum
when m = n−1, and G is a tree. Then r = 1, so
n− (n−1)+1= 2, as desired.
Assume the formula holds for graphs with size less than m, and let
G be a connected planar graph with size m > n−1. Then G
contains a cycle. Let e be an edge of a cycle. Now G − e is
connected and planar with size m−1. It has r −1 regions, since
the two regions bordering e merge into one when e is deleted.
Then n−m+ r = n− (m−1)+(r −1) = 2, so the formula holds
for G .
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Planarity

Theorem

The size of a planar graph with n ≥ 3 satis�es m ≤ 3n−6.

Proof.

Let G be a planar graph with order n, size m, and r regions with
lengths ri . Each region uses at least three edges, and each edge is
used twice in region boundaries, so 3r ≤ ∑ ri = 2m. Now
n−m+ r = 2, so 6= 3n−3m+3r ≤ 3n−3m+2m = 3n−m.
Thus m ≤ 3n−6.

De�nition

A graph is maximal planar if no edge can be added without
making it nonplanar. A plane drawing of a graph is a triangulation
if every region is a triangle.
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Planarity

Corollary

The following are equivalent for a planar graph G .

1. G is maximal planar.

2. G has m = 3n−6.
3. A plane drawing of G is a triangulation.

Proof.

(1⇔ 3) A plane drawing of G is a triangulation if and only if there
is no region with length longer than 3, since otherwise a chord
could be added.
(2⇔ 3) Following the proof of Theorem 21, every region is a
triangle if and only if 3r = 2m if and only if m = 3n−6.
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Planarity

A maximal planar graph may be a 3-tree. Indeed, any maximal
planar graph formed by starting with K3 and adding a vertex
adjacent to three vertices of a region is a 3-tree. But maximal
planar graphs need not be 3-trees, or even 3-degenerate. Any
planar graph is 5-degenerate, and there are planar graphs with
degeneracy 4 and 5.

Let G be a maximal planar graph with edge e = uv , and x and
y the other vertices of the triangular regions containing e. A
�ip of uv deletes uv and adds xy (assuming it is not already
an edge).

u

x

y

v

→

u

x

y

v
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Planarity

Theorem

(Wagner [1936]) Any maximal planar graph can be converted to

(the 3-tree) Pn−2+K2 via a sequence of �ips.

Sketch: Start with a vertex with maximum degree and �ip
edges until it is adjacent to all other vertices. Repeat the
process with a second vertex. The resulting graph must be
Pn−2+K2.
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Outerplanar Graphs

De�nition

A graph is outerplanar if it has a plane drawing with all vertices on
the exterior region.

The graphs K4 and K2,3 are not outerplanar, since any drawing of
them must have one vertex in the interior.

→

u

v
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Outerplanar Graphs

Theorem

Any outerplanar graph is 2-degenerate. In particular, any nontrivial

outerplanar graph has at least two vertices of degree at most two.

Proof.

The result is obvious when 2≤ n ≤ 4, where K4 is the only
non-outerplanar graph. Assume the result holds for all maximal
outerplanar graphs with order less than n, and let G be a maximal
outerplanar graph of order n. Then all the vertices are on a
(Hamiltonian) cycle C . Every other edge uv is a chord of C . The
vertices of the two u−v paths on C induce two maximal
outerplanar graphs than only overlap on {u,v}. By induction, each
of them has at least two vertices of degree at most two, at least
one of which is not u or v . Thus the result holds for G . Thus it
holds for any nontrivial outerplanar graph. Thus all outerplanar
graphs are 2-degenerate.
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K4 Subdivisions

Corollary

The size of a nontrivial outerplanar graph satis�es m ≤ 2n−3.

A maximal outerplanar graph, which is a 2-tree, has
m = 2n−3.
Any subdivision of K3 is a cycle, so the maximum size of a
graph with no K3 subdivision is n−1.
What guarantees the existence of a subdivision of K4?

De�nition

An S-lobe of a graph G is a subgraph of G induced by a cutset S
and a component of G −S .

Lemma

(Dirac [1960]) If G is a k-connected graph and v , v1, ..., vk are

distinct vertices of G , then there are independent v −vi paths for

1≤ i ≤ k .
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K4 Subdivisions

Theorem

(Dirac [1964]) Every graph with at most one vertex with degree less

than 3 contains a subdivision of K4.

Proof.

We use induction on order n. The smallest order with a graph (K4)
satisfying the hypothesis is n = 4, which certainly satis�es the
conclusion. Assume the result holds for all graphs with order n′,
4≤ n′ < n, and G has order n. If G has more than one component
or block, then some component or end-block satis�es the
hypotheses, and by induction it contains a subdivision of K4. Hence
we may assume that G is 2-connected.
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K4 Subdivisions

u

v
H

Proof.

If G has a cutset S = {u,v}, consider a lobe H that does not
contain any vertex with degree less than 3. If this lobe contains
another cutset of size 2, consider the new set and smaller lobe. In
this way, we may assume H has no cutset of size 2. Then u and v
both have at least two neighbors in H (else replacing one with its
neighbor would yield another cutset in H). If uv ∈ H, then H
satis�es the induction hypothesis. If not, then there is a u−v path
outside H, which can be treated as a subdivided edge.
If G is 3-connected, then for any vertex v , G −v is 2-connected.
Thus G −v contains a cycle C . Then Lemma 29 says that there
are three independent paths between v and C . These paths and C
produce a subdivision of K4.
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K4 Subdivisions

Corollary

(Dirac [1964]) If G has m > 2n−3, then G contains a subdivision

of K4, and the graphs of size 2n−3 that don't contain a

subdivision of K4 are exactly the 2-trees.

Proof.

Let G have m > 2n−3= (3−1)n−
(
3

2

)
. By Corollary 13, G

contains a 3-core. By Theorem 30, it contains a subdivision of K4.
If a graph of size 2n−3 has no 3-core, it is maximal 2-degenerate.
By Theorem 16, exactly the 2-trees do not contain a subdivision of
K4.

It is natural to ask what forces a graph to contain a subdivision
of K5. Minimum degree 4 does not su�ce, as shown by K2,2,2.

However, m > 3n−6 forces G to contain a subdivision of K5.
This was conjectured by Dirac and proved by Mader [1998].
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Series-Parallel Graphs

Electrical circuits can be modeled using graphs, with edges
representing wires, and vertices representing their intersections.
Components of an electrical circuit can be combined in series
(one after another) or in parallel (beside each other).

De�nition

A series-parallel graph is a multigraph with two distinguished
vertices (the source and sink) that can be constructed from K2

using two operations:
parallel composition�identifying the sources and sinks of two
series-parallel graphs
series composition�identifying the source of one series-parallel
graph with the sink of another.
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Series-Parallel Graphs

Example. Series composition (left) and parallel composition
(right) of two series-parallel graphs.

← →
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Series-Parallel Graphs

We could view the edges of a series-parallel graph as being
directed from the source to the sink, but this is not required.

Theorem

(Du�n [1965]) For a graph G , the following are equivalent:

1. G contains no K4-subdivision

2. G is contained in a 2-tree

3. every 2-connnected component of G is series-parallel.

3⇒ 2⇒ 1 is not di�cult, but the rest of the proof is harder.

This implies that any series-parallel graph (not multigraph) has
size at most 2n−3, and 2-trees are the extremal graphs.
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K5 Subdivisions

There is a well-known characterization of planar graphs.

Theorem

(Kuratowski's Theorem | Kuratowski [1930]) A graph G is planar

if and only if it does not contain a subdivision of K5 or K3,3.

This suggests results on K5 subdivisions.

Theorem

(Mader [1998]) If G has m > 3n−6, then G contains a subdivision

of K5.

(Mader [2005]) The graphs of size 3n−6 that don't contain a

subdivision of K5 are exactly maximal planar graphs, and graphs

formed by identifying triangles of maximal planar graphs.
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Rigid Graphs

Consider a graph in the plane with edges that are line
segments with �xed length that are hinged at the vertices (the
angles at the vertices may vary).

De�nition

A graph is rigid if when its vertices are placed in general position in
the plane (�xing the lengths of the edges), there is no movement of
the graph in the plane preserving the edge lengths that does not
also preserve all distances between vertices. A graph is �exible if it
is not rigid. A graph is a Laman graph if and only if m = 2n−3
and each nontrivial subgraph with order n′ has size m′ ≤ 2n′−3.

Any rigid graph must be 2-connected, since multiple
components could be moved independently, and multiple
blocks could be rotated at a cut-vertex.

Laman graphs include all maximal 2-degenerate graphs, and
some with 3-cores.
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Rigid Graphs

Henneberg found an operation characterization of rigid graphs.

Theorem

(Henneberg [1911]) A graph is a minimal rigid graph if and only if

it can be constructed by starting with K2 and iterating the

following two operations (Henneberg operations).

1. Add a vertex of degree two.

2. Add a vertex of degree three adjacent to two vertices that are

neighbors and delete the edge between them.

←
1.

→
2.

Laman proved a characterization of rigid graphs involving their
sizes.
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Rigid Graphs

Theorem

(Laman [1970]) A graph has a Henneberg construction if and only

if it is a Laman graph.

Proof.

(⇒) Assume G has a Henneberg construction. Certainly K2 is a
Laman graph and both operations increase n by 1 and m by 2 in G .
If a vertex is added to a subgraph of G , its size is increased by at
most 2. Thus the operations preserve Laman graphs.
(⇐) (HORSSSSSW [2005]) If n = 2, then K2 is the only Laman
graph. Assume that any Laman graph with order less than n > 2
has a Henneberg construction. If G is a Laman graph with order n,
then m = 2n−3, and it has a vertex of degree at most 3. If any
vertex v has degree 0 or 1, then G −v is not a Laman graph. If v
has degree 2, then G −v is a Laman graph since its size is
2(n−1)−3 and all its subgraphs are subgraphs of G .
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Rigid Graphs

Proof.

If v has degree 3, let N (v) = {v1,v2,v3}. Let H = G −v , which
has order n−1 , but only 2(n−1)−4 edges. We must add one
edge joining one of the three pairs of vertices in N (v). Consider
the rigid components of H: maximal subsets of some k vertices
spanning 2k−3 edges. Now v1, v2 and v3 cannot belong to the
same rigid component (otherwise the size restriction would be
violated in G on the subset consisting of this component and v).
Two rigid components share at most one vertex, otherwise their
union would be a larger Laman subgraph. Say v1 and v2 are not in
a common rigid component. Then adding e = v1v2 doesn't violate
the size restriction on any subset and converts H to a Laman graph
H ′. Then H ′ and hence G has a Henneberg construction.

v3

v2
v1

v
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Extremal Graph Theory

De�nition

The extremal graphs for the bound f (G )≤ g (G ) are the graphs
that make it an equality.

Extremal graph theory is concerned with the question of
�nding the extreme value (maximum or minimum) of a
parameter over some class of graphs. Perhaps the most
common is example is �nding the maximum size over a given
class.

De�nition

The extremal number ex (n,G) is the maximum size among all
graphs of order n that do not contain any graph G ∈G as a
subgraph. We write ex (n,G ) when G= {G}.
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Extremal Graph Theory

Thus a graph with size ex (n,G)+1 must contain some G ∈G
as a subgraph. The following table lists some extremal
numbers, along with the extremal graphs when known.

Class/Property ex (n,G) (large n) Extremal Graphs

contains cycle n−1 trees

not outerplanar 2n−3 maximal outerplanar

contains K4 subdivision 2n−3 2-trees

nonplanar 3n−6 maximal planar

contains K5 subdivision 3n−6 identify K3s of max. planar

two disjoint cycles 3n−6 K3+Kn−3
contains k+1-core kn−

(k+1

2

)
maximal k-degenerate

has α (G )< n−k+1 kn−
(k+1

2

)
Kk +Kn−k

contains (k+1)K2 kn−
(k+1

2

)
Kk +Kn−k
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Extremal Graph Theory

De�nition

The independence number α (G ) of a graph G is the size of the
largest independent set of G .

Proposition

If G has α (G )≤ n−k , then m ≤ kn− k(k+1)
2

. The extremal

graphs are Kk +Kn−k .

Proof.

Let G have an independent set of n−k vertices. Add all other
possible edges. The other k vertices induce Kk , and the n−k
vertices are joined to all of them. This produces the graph
Kk +Kn−k , which is a k-tree.

The results for two disjoint cycles and matchings are more
di�cult to prove.
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Uniquely Colorable Graphs

De�nition

A graph is uniquely k-colorable if any k-coloring produces the
same vertex partition. A graph is uniquely colorable if any
minimum coloring produces the same vertex partition.

Complete graphs are uniquely colorable.

So are trees.

If G is uniquely k-colorable, and a vertex v of degree k−1 is
added so that it is adjacent vertices in all but one color class,
the new graph is uniquely k-colorable.

Uniquely colorable graphs include all k-trees, but not all
maximal k-degenerate graphs.

uniquely colorable maximal
k− trees ⊂ maximal k−degenerate ⊂ k−degenerate

graphs graphs
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Uniquely Colorable Graphs

A uniquely k-colorable graph G has δ (G )≥ k−1.

Let G be a uniquely k-colorable graph with d (v) = k−1 for
some vertex v . Then G −v is uniquely colorable.

Thus uniquely k+1-colorable graphs of larger order can always
be constructed by adding (uniquely colorable) maximal
k-degenerate appendages.

Do all uniquely k+1-colorable graphs contain a maximal
k-degenerate graph? No!

Surprisingly, there are also triangle-free uniquely 3-colorable
graphs.
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Uniquely Colorable Graphs

Lemma

In a uniquely colorable graph, any two color classes induce a

connected graph.

Proof.

If not, the colors could be exchanged on one component of the
graph they induce.
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Uniquely Colorable Graphs

Theorem

(Xu [1990]) A uniquely k+1-colorable graph has m ≥ kn− k(k+1)
2

.

Proof.

Let G be uniquely k+1-colorable with color classes Vi . Each edge
of G is in exactly one subgraph induced by two color classes. Thus

m (G ) = ∑
i 6=j

m (G [Vi ∪Vj ])

≥ ∑
i 6=j

(|Vi ∪Vj |−1)

= ∑
i 6=j
|Vi ∪Vj |−

(k+1

2

)
= kn− k(k+1)

2
.
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Uniquely Colorable Graphs

Uniquely colorable maximal k-degenerate graphs are extremal
graphs for this bound. The triangle-free graph above is not.
Xu conjectured that any extremal graph must contain a
triangle.
(Akbari/Mirrokni/Sadjad [2001]) The following graph is
uniquely 3-colorable, triangle-free, and has m = 2n−3.
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Apex Graphs

What about graphs with m = 4n−10?

An apex graph G has G −v planar for some vertex v .

A vertex v has degree at most n−1.

The planar graph G −v has size at most 3(n−1)−6.

Thus an apex graph has size at most
3(n−1)−6+(n−1) = 4n−10.

They have application in the proof of Hadwiger's Conjecture
(k = 6), and other problems in graph theory.
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Thank You!

Thank you!
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