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Abstract

The Sierpinski triangle can be modeled using graphs in two dif-

ferent ways, resulting in classes of graphs called Sierpinski triangle

graphs and Hanoi graphs. The latter are closely related to the Tow-

ers of Hanoi problem, Pascal's triangle, and Apollonian networks.

Parameters of these graphs have been studied by several researchers.

We determine the number of Eulerian circuits of Sierpinski triangle

graphs and present a signi�cantly shorter proof of their domination

number. We also �nd the 2-tone chromatic number and the number

of diameter paths for both classes, generalizing the classic Towers of

Hanoi problem.

The Sierpinski triangle is a familiar fractal. One way to iteratively construct
it is to start with a triangle (level 1). In each step, combine three copies of
level k together to produce level k + 1.

1 2 3

There are two ways to model the Sierpinski triangle as a graph.
In Model 1, each intersection of lines is represented by a vertex, and

each line segment between vertices is represented by an edge.
In Model 2, each copy of level 1 of the fractal is represented by a vertex,

and there are edges between vertices that have a point in common.
The graphs in Model 2 can be considered duals of sorts for the graphs

in Model 1.

←
2

→
1

Unde�ned notation and terminology will generally follow [1].
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1 Sierpinski Triangle Graphs

The graphs in Model 1 are known as Sierpinski triangle graphs. Denote
the level k Sierpinski triangle graph STk. Thus ST1 = K3.

The recursive construction naturally leads to recurrence relations for
many parameters. A recurrence for order is n1 = 3, nk+1 = 3nk − 3, with
solution nk = 3

23
k−1 + 3

2 . The size of STk is clearly mk = 3k. Note that
STk has 3 degree 2 vertices and 3

23
k−1 − 3

2 degree 4 vertices. Denote the
degree 2 vertices of STk as corners, and the three vertices contained in
two copies of STk−1 as middle vertices.

Many researchers have determined properties of these graphs. Hinz,
Klavzar, and Zemljic [5] have a survey of Sierpinski triangle graphs and

related concepts. Bradley [3] found that for k ≥ 3, There are 3
3k−2−3

2 23
k−2

Hamiltonian cycles in STk.
Since STk is connected with all even degrees, it is Eulerian. We can

count the number of Eulerian circuits, considered as ordered lists of edges
without regard to starting vertex or direction. This sequence begins 1, 16,
65536, 4503599627370496 ...

Theorem 1.1. There are 43
k−1−1 Eulerian circuits in STk.

A

B

C

Proof. Let Ek be the number of Eulerian circuits of STk. Clearly E1 = 1.
Consider STk+1, which is formed from three copies of STk, which we denote
A, B, and C. The circuit can be split into segments based on which of A, B,
or C contain each edge. We split it each time the circuit reaches a middle
vertex. Then there are exactly two segments for each of A, B, and C. The
segments may occur in a consistent order (e.g. ABCABC) or there may
be a reversal (e.g. ABCCBA) where the circuit touches a middle vertex
but continues in the same copy of STk. There cannot be more than one
reversal, since then the circuit would not be Eulerian.

If there is a reversal, there are three middle vertices where it may occur.
Without loss of generality, assume the circuit has the form ABCCBA.
The segments of the circuit in A correspond to an Eulerian circuit of A. To
construct an Eulerian circuit of G, we start with A and choose a trail to B
in 2Ek ways. Similarly, there are 2Ek trails through B and C, after which
the rest of the circuit is forced. There are two directions that could be
taken, so divide by 2 to �nd 4 (Ek)

3
choices for each of the three reversals.
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If there is no reversal, we similarly have 2Ek choices for each subgraph,
and two directions, so there are 4 (Ek)

3
choices. Thus Ek+1 = 3 · 4 (Ek)

3
+

4 (Ek)
3
= 16 (Ek)

3
.

It is easily checked that Ek = 43
k−1−1 is the solution to this recurrence

relation.

A dominating set of a graph G is a set S of vertices so that every vertex
not in S is adjacent to a vertex in S. The domination number γ (G)
is the minimum size of a dominating set of G. Teguia and Godbole [10]
showed that the domination number γ (STk) = 3k−2 for k ≥ 3. Their proof
is about 1.5 pages. A much shorter proof of this uses a discharging-type
argument.

Proposition 1.1. [10] We have γ (STk) = 3k−2 for k ≥ 3.

Proof. Clearly γ (ST3) ≤ 3. Also, γ (STk+1) ≤ 3γ (STk), so γ (STk) ≤ 3k−2

for k ≥ 3.
For a lower bound, consider the 3k−2 copies of ST2 in STk. Any mini-

mum dominating set S of STk contains at least one degree 4 vertex or at
least two corners of every ST2. Assign each copy of ST2 a score of 1 for each
degree 4 vertex in S and 1

2 for each corner in S. Let t be the total score.
Then each ST2 gets a score of at least 1, so γ (STk) = |S| ≥ t ≥ 3k−2.

Teguia and Godbole [10] showed that diam (STk) = 2k−1. We can deter-
mine which pairs of vertices achieve this maximum.

Proposition 1.2. For k ≥ 1, diam (STk) = 2k−1, and for k ≥ 2, the pairs
of vertices at distance 2k−1 are those on di�erent exterior sides of the graph
such that their distances to the closest middle vertices sum to at least 2k−2.

For example, the vertices at maximum distance from the black vertex
are colored gray.
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Proof. This is obvious for ST1 and ST2. For STk, let u, v be vertices at
maximum distance. A geodesic between them must go through a middle
vertex w. Now

d (u, v) ≤ d (u,w) + d (w, v) ≤ 2k−2 + 2k−2 = 2k−1.

For this to be an equality, u and v must be on the exterior sides of their
copies of STk−1. Thus they are on opposite exterior sides of STk. If the
sum of their distances to the closest middle vertices is less than 2k−2, there
is a shorter path through the third copy of STk−1.

Corollary 1.1. For k ≥ 2, there are 3
(
2k−2 + 1

)
2k−2 pairs of vertices at

distance 2k−1 in STk.

Proof. There are three pairs of corners and three pairs of corner and middle
vertex. Consider a vertex u that is distance r from the nearest middle
vertex. Then the other end v of a maximum distance u−v path must be at
least 2k−2 − r from its nearest middle vertex. Thus there are r + 1 choices
for v. By symmetry, there are

3+3+6

2k−2−1∑
r=1

(r + 1) = 6

2k−2∑
r=1

r = 6
1

2

(
2k−2 + 1

)
2k−2 = 3

(
2k−2 + 1

)
2k−2

such pairs.

We can also determine the radius of STk.

Proposition 1.3. For k ≥ 3, rad (STk) = 3 · 2k−3.

Proof. Let v be a vertex of STk, and u be a vertex at maximum distance
from v. Then u is in a di�erent copy of STk−1 from v. Let w be a middle
vertex contained in the copies of STk−1 containing u and v. Then d (v, u) =
d (v, w) + d (w, u) ≥ 1

22
k−2 + 2k−2 = 3 · 2k−3. All three vertices that are

midpoints of the geodesic paths between the middle vertices of STk achieve
this minimum.

A graph is uniquely 3-colorable if its vertex set has a unique partition
into 3 independent sets. Klavzar [7] proved that STk is uniquely 3-colorable.
We include the proof of this result since it is essential to the corollary that
follows it.
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Proposition 1.4. [7] For k ≥ 1, STk is uniquely 3-colorable.

Proof. We use induction on the assumption that STk is uniquely 3-colorable
and has three di�erent colors on its corners. For ST1, this is obvious; assume
it holds for STk−1. We construct STk from three copies of STk−1. Thus
the middle vertices of STk have three distinct colors. Thus the colorings of
each copy of STk−1 are forced, and there are three di�erent colors on the
corners of STk.

In fact, STk is critical with respect to this property�deleting any edge
results in a graph that is not uniquely 3-colorable.

Corollary 1.2. For k ≥ 1, STk is critical with respect to the property of
being uniquely 3-colorable.

Proof. For ST1, deleting any edge e results in a 2-colorable graph. When
constructing ST2 − e, this allows a coloring with a common color on two
corner vertices. Similarly, there is a coloring of STk − e with a common
color on two corner vertices.

2 Hanoi Graphs

The graphs in Model 2 are known as Hanoi graphs. Denote the level
k Hanoi graph Hk, so H1 = K3. The order of Hk is clearly nk = 3k.
A recurrence for size is m1 = 3, mk+1 = 3mk + 3, with solution mk =
3
2

(
3k − 1

)
. Note that Hk has 3 degree 2 vertices (corners) and 3k − 3

degree 3 vertices. Denote the three edges joining two copies of Hk−1 as
middle edges. Note that contracting every edge of Hk that is not on a
triangle produces a Sierpinski triangle graph STk−1.

Hanoi graphs get their name from the Towers of Hanoi problem. In this
problem, there are three pegs and k disks of di�erent sizes, and a larger
disk cannot be placed on a smaller disk. One disk at a time can be moved
to another peg. This can be modeled with a graph. Label the pegs 0, 1,
and 2 and assign each state a string indicating which peg contains the disks
from smallest to largest. An edge joins two vertices when there is a valid
move between the pegs. The result is a Hanoi graph.

Hanoi graphs also appear in Pascal's Triangle. Let vertices represent
each binomial coe�cient

(
r
x

)
with x < 2k whose value is odd. Add edges

between
(
r1
x1

)
and

(
r2
x2

)
if r1 = r2 or r1 = r2 − 1 and |x1 − x2| ≤ 1. The

result is the Hanoi graph Hk.

5



1

1 1
1 2 1

1 3 3 1

→

An Apollonian network is a planar 3-tree. Consider a particular class
of Apollonian networks Ak, where A0 = K3, and Ak+1 is formed by adding
degree 3 vertices in all bounded triangular regions of Ak. Now the weak
dual of Ak (excluding the outside region) is Hk. The dual graph is called
the extended Hanoi graph H+

k , which can be formed from Hk by adding
a degree 3 vertex adjacent to the three corners. Thus H+

k is cubic.

A2 → H+
2

There is a survey of Hanoi graphs and related concepts in [5]. A graph
is uniquely 3-edge-colorable if its edge set has a unique partition into 3
independent sets. Klavzar [7] proved that Hk is uniquely 3-edge-colorable
using a bijection with 3-colorings of STk. A direct (inductive) proof is also
possible.

Proposition 2.1. [7] For all k ≥ 1, Hk is uniquely 3-edge-colorable.

Proof. We use induction on the hypothesis that Hk is uniquely 3-edge-
colorable, and the colors not used on the three corners are distinct. For
H1, this is obvious. Assume this is true for Hk, and use three copies of
Hk to construct Hk+1. Each pair of edges added to join these three graphs
have distinct colors, so all three do. Thus the coloring of one copy of Hk

forces the colorings of the other two copies of Hk. Also, the colors not used
on the three corners are distinct.

The solution to the classic Towers of Hanoi problem is that it takes
2k − 1 moves to transfer all k disks from one peg to another peg. In graph
theory terms, this means that the distance between two corners of Hk is
2k − 1. More generally, it is easy to prove that diam (Hk) = 2k − 1. We
can determine which pairs of vertices achieve this maximum.

Theorem 2.1. For k ≥ 1, diam (Hk) = 2k − 1, and for k ≥ 2, the pairs of
vertices at distance 2k − 1 are those on di�erent exterior sides of the graph
such that their distances to the closest corner vertices sum to at most 2k−1.
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Proof. This is obvious for H1 and H2. For Hk, let u, v be vertices at
maximum distance. A geodesic between them must go through a middle
edge e = xy. Now

d (u, v) ≤ d (u, x) + 1 + d (y, v) ≤
(
2k−1 − 1

)
+ 1 +

(
2k−1 − 1

)
= 2k − 1.

For this to be an equality, u and v must be on the exterior sides of their
copies of Hk−1. Thus they are on opposite exterior sides of Hk. If the sum
of their distances to the closest corner vertices is more than 2k−1, there is
a path through the third copy of Hk−1 with length at most

2
(
2k−1 − 1

)
−
(
2k−1 + 1

)
+ 1 +

(
2k−1 − 1

)
+ 1 = 2k − 2,

which is shorter.

Corollary 2.1. For k ≥ 1, there are 3
(
22k−2 + 2k−1 − 1

)
pairs of vertices

at distance 2k − 1 in Hk.

Proof. There are three pairs of corners. Consider a vertex u that is distance
r from the nearest corner vertex. Then the other end v of a maximum
distance u−v path must be at most 2k−1−r from its nearest corner vertex.
Thus there are 2k−1 − r+ 1 choices for v. By symmetry, the number Pk of
such pairs is

Pk =3 + 6

2k−1−1∑
r=1

(
2k−1 − r + 1

)
=3 + 6

((
2k−1 − 1

) (
2k−1 + 1

)
− 1

2

(
2k−1 − 1

) (
2k−1

))
=3 + 6

(
2k−1 − 1

) (
2k−2 + 1

)
=3
(
22k−2 + 2k−1 − 1

)

A proper 2-tone coloring of a graph G assigns two distinct colors to
each vertex so that adjacent vertices have no common colors, and vertices
at distance 2 have at most one common color. The 2-tone chromatic

number of G, τ2(G), is the smallest k for which G has a proper t-tone
k-coloring.

If H is a subgraph of G then τ2(H) ≤ τ2(G). Since τ2(Kn) = 2n, we
have τ2 (G) ≥ 2ω (G). See [2] for basic information on 2-tone coloring.

Proposition 2.2. For k ≥ 1, τ2 (Hk) = 6.
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Proof. Since K3 ⊆ Hk, we have τ2 (Hk) ≥ τ2 (K3) = 6. A 2-tone 6-coloring
can be found by piecing together copies of H2 with the coloring below.

12 34 25 46

56 13
14 26

35

A somewhat more complicated argument is required to show that τ2
(
H+

k

)
=

6 for all k > 1.

Theorem 2.2. For k ≥ 2, τ2
(
H+

k

)
= 6.

12 34 16 23

56 45
14 36

25

46

Proof. For k = 2, the coloring above works. For larger values of k, we
use three copies of this coloring, but permute the colors to avoid con�icts.
Clearly, permuting colors within a copy of Hk cannot create a con�ict.
In each copy of Hk, swap the pairs of colors in the left and top of the K3

containing the corner. This maintains the same labels on theK3s containing
the corners and does not create any con�icts between the three Hks. This is
illustrated for H3 below. The label 46 can be added to the extra vertex.

12 34 16 23

56 45
14 36

25

→

12 34 25 13

56
46

24
35

16

26 35 16 23

14
45

56
13

24
45

13 46
35

26 12
14 36

25
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The 2-tone chromatic number of Sierpinski triangle graphs is 7 for k ≥ 2.
The in�nite triangular grid has 2-tone chromatic number 7, and Sierpinski
triangle graphs are subgraphs of it. The coloring below can be extended
in�nitely since the boundaries use the same colors.

14 25 34 15 24 35 14

36 17 26 37 16 27 36

15 24 35 14 25 34 15

37 16 27 36 17 26 37

14 25 34 15 24 35 14
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