SUMMARY OF HYPOTHESIS TESTS

Statistics students must learn several different hypothesis tests. The following table summarizes the tests. All of these tests other than the Chi-Square Goodness of Fit Test can be done using a TI-83/84.

Section	Name	Null Hypothesis	Test Statistic	Notes
9.4	One Mean <i>z</i> -test	$\mu = \mu_0$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	Use z for σ known
9.5	One Mean <i>t</i> -test	$\mu = \mu_0$	$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$	Use t for σ unknown
10.2	Two Sample t -test	$\mu_1 = \mu_2$	$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	Pooled if $\sigma_1 = \sigma_2$
10.3	Two Sample t -test	$\mu_1 = \mu_2$	$t = rac{\overline{x}_1 - \overline{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$	Nonpooled if $\sigma_1 \neq \sigma_2$
10.5	Paired t -test	$\mu_1 = \mu_2$	$t=rac{\overline{d}}{s_d/\sqrt{n}}$	Use t -test on differences
12.2	One Proportion z -test	$p = p_0$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	
12.3	Two Proportion z -test	$p_1 = p_2$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p (1 - \hat{p}_p)} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$\hat{p}_p = \frac{x_1 + x_2}{n_1 + n_2}$
13.2	Chi-Square Goodness of Fit Test	the frequencies are the same	$\chi^2 = \frac{(O-E)^2}{E}$	E = np
13.4	Chi-Square Test	variables are independent	$\chi^2 = \frac{(O-E)^2}{E}$	$E = \frac{(\sum row)(\sum column)}{total}$
16.3	Analysis of Variance	$\mu_1 = \mu_2 = \mu_3 = \dots$	$F = \frac{MSTR}{MSE} = \frac{(n-k)\sum n_i(\overline{x}_i - \overline{x})^2}{(k-1)\sum (n_i - 1)s_i^2}$	